Technical Fuel Assessment
We focus on the carbon-neutral utilization of novel chemical energy carriers (“fuels”) for the reconversion to electric power, in ground transportation or in aviation. The overall goals are the assessment and optimization of the synthesized fuels from the various production paths considered in the Subtopic Power-based Fuels and Chemicals. For a global assessment and optimization of these fuels, it is key to determine the technical performance, pollutant reduction potential, drop-in capability (compatibility), availability and cost. Finally, an iterative co-optimization of fuel, combustion engine technology, and subsequent exhaust gas treatment will synergistically exploit the full potential of the fuel utilization system.
The technical fuel assessment with regard to “real world application scenarios” is of major importance to deliver feedback information to the fuel synthesis topics as fuel composition impacts combustion and emission behavior significantly. Real driving emission (RDE) legislation and low-temperature testing conditions also bring further hallenges with regard to both severe engine pollutant formation conditions and highly transient exhaust gas conditions for exhaust gas aftertreatment devices.
Publications
-
Böhmeke, C.; Heinz, L.; Wagner, U.; Koch, T.
Influence of Lube Oil and Fuel Additives on the Particulate Raw Emission Behavior of Gasoline Engines
2025. SAE International Journal of Fuels and Lubricants, 18 (1), 04–18. doi:10.4271/04-18-01-0004
-
Gashnikova, D.; Maurer, F.; Bauer, M. R.; Bernart, S.; Jelic, J.; Lützen, M.; Maliakkal, C. B.; Dolcet, P.; Studt, F.; Kübel, C.; Damsgaard, C. D.; Casapu, M.; Grunwaldt, J.-D.
Lifecycle of Pd Clusters: Following the Formation and Evolution of Active Pd Clusters on Ceria During CO Oxidation by In Situ/Operando Characterization Techniques
2024. ACS Catalysis, 14 (19), 14871–14886. doi:10.1021/acscatal.4c02077 -
Düll, A.; Cros-Le Lagadec, A.; Buchmüller, J.; Häber, T.; Ates̗ C.; Börnhorst, M.
Intensifying interfacial oscillations in falling film flows over rectangular corrugations
2024. Physics of Fluids, 36 (9), Art.-Nr.: 092107. doi:10.1063/5.0222760 -
Rang, F.; Delrieux, T.; Maurer, F.; Flecken, F.; Grunwaldt, J.-D.; Hanf, S.
Supported Binuclear Gold Phosphine Complexes as CO Oxidation Catalysts: Insights into the Formation of Surface‐Stabilized Au Particles
2024. Small Science, 4 (12). doi:10.1002/smsc.202400345 -
Zengel, D.; Marchuk, V.; Kurt, M.; Maurer, F.; Salcedo, A.; Michel, C.; Loffreda, D.; Aouine, M.; Loridant, S.; Vernoux, P.; Störmer, H.; Casapu, M.; Grunwaldt, J.-D.
Pd loading threshold for an efficient noble metal use in Pd/CeO2 methane oxidation catalysts
2024. Applied Catalysis B: Environment and Energy, 358, Art.-Nr.: 124363. doi:10.1016/j.apcatb.2024.124363 -
Suarez Orduz, H. A.; Bugarin, L.; Heck, S.-L.; Dolcet, P.; Casapu, M.; Grunwaldt, J.-D.; Glatzel, P.
L -edge X-ray spectroscopy of rhodium and palladium compounds
2024. Journal of Synchrotron Radiation, 31 (4). doi:10.1107/S1600577524004673 -
Eldridge, T. J.; Borchers, M.; Lott, P.; Grunwaldt, J.-D.; Doronkin, D. E.
Elucidating the Role of the State of Pd in the H -SCR of NO by Operando XANES and DRIFTS
2024. Catalysis Science & Technology. doi:10.1039/D4CY00574K -
Grunwaldt, J.-D.; Gashnikova, D.; Maurer, F.; Sauter, E.; Bernart, S.; Jelic, J.; Dolcet, P.; Maliakkal, C. B.; Wang, Y.; Wöll, C.; Studt, F.; Kübel, C.; Casapu, M.
Highly Active Oxidation Catalysts through Confining Pd Clusters on CeO₂ Nano‐Islands
2024. Angewandte Chemie International Edition, 63 (35), e202408511. doi:10.1002/anie.202408511 -
Delrieux, T.; Sharma, S.; Maurer, F.; Dolcet, P.; Lausch, M.; Zimina, A.; Cárdenas, C.; Lott, P.; Casapu, M.; Sheppard, T. L.; Grunwaldt, J.-D.
A laboratory scale fast characterizing feedback loop for optimizing technical emission control catalysts
2024. Reaction Chemistry & Engineering, 9 (11), 2868–2881. doi:10.1039/D4RE00168K -
Reich, J.; Kaiser, S.; Heiz, U.; Grunwaldt, J.-D.; Kappes, M. M.; Esch, F.; Lechner, B. A. J.
A Critical View on the Quantification of Model Catalyst Activity
2024. Topics in Catalysis, 67 (13-14), 880–891. doi:10.1007/s11244-024-01920-0 -
Sharma, S.; Maurer, F.; Lott, P.; Sheppard, T. L.
Unlocking the Mysteries of Technical Catalyst Deactivation: A View from Space
2024. ChemCatChem, 16 (14), Art.-Nr.: e202301655. doi:10.1002/cctc.202301655 -
Suarez Orduz, H. A.; Heck, S.-L.; Dolcet, P.; Watier, Y.; Casapu, M.; Grunwaldt, J.-D.; Glatzel, P.
Versatile spectroscopic cell for operando studies in heterogeneous catalysis using tender X‐ray spectroscopy in fluorescence mode
2024. Chemistry–Methods. doi:10.1002/cmtd.202300044 -
Marchuk, V.; Sharapa, D. I.; Grunwaldt, J.-D.; Doronkin, D. E.
Surface States Governing the Activity and Selectivity of Pt-Based Ammonia Slip Catalysts for Selective Ammonia Oxidation
2024. ACS Catalysis, 14 (2), 1107–1120. doi:10.1021/acscatal.3c05019 -
Kubach, H.; Bucherer, M.; Gerber, D.; Grüninger, M.; Heinz, A.; Knapp, S.; Koch, T.; Leimann, D.; Wagner, U.; Ziegler, J.
Trends und Herausforderungen bei der Entwicklung von Wasserstoffmotoren
2024. Chemie Ingenieur Technik, 96 (1-2), 167–181. doi:10.1002/cite.202300119
-
Wan, S.; Häber, T.; Lott, P.; Suntz, R.; Deutschmann, O.
Experimental investigation of NO reduction by H2 on Pd using planar laser-induced fluorescence
2023. Applications in Energy and Combustion Science, 16, Art.-Nr.: 100229. doi:10.1016/j.jaecs.2023.100229 -
Grüninger, M.; Toedter, O.; Koch, T.
Gesetzliche Rahmenbedingungen für moderne Antriebe mit Verbrennungsmotor
2023. MTZ - Motortechnische Zeitschrift, 84 (5), 30–37. doi:10.1007/s35146-023-1468-z -
Michler, T.; Wippermann, N.; Toedter, O.; Niethammer, B.; Otto, T.; Arnold, U.; Pitter, S.; Koch, T.; Sauer, J.
Corrigendum to “Gasoline from the bioliq® process: Production, characterization and performance” [Fuel Processing Technology 206 (2020) 106476]
2023. Fuel Processing Technology, 240, Art.Nr. 107577. doi:10.1016/j.fuproc.2022.107577
-
Borchers, M.; Lott, P.; Deutschmann, O.
Selective Catalytic Reduction with Hydrogen for Exhaust gas after-treatment of Hydrogen Combustion Engines
2022. Topics in Catalysis, 66 (13-14), 973–984. doi:10.1007/s11244-022-01723-1 -
Marchuk, V.; Huang, X.; Murzin, V.; Grunwaldt, J.-D.; Doronkin, D. E.
Operando QEXAFS Study of Pt–Fe Ammonia Slip Catalysts During Realistic Driving Cycles
2022. Topics in Catalysis, 66 (13-14), 825–838. doi:10.1007/s11244-022-01718-y -
Weyhing, T.; Koch, T.; Wagner, U.; Dahmen, N.
G40 - Ein Schritt zu einem CO -neutralen Benzinkraftstoff
2022. MTZ - Motortechnische Zeitschrift, 83 (9), 30–36. doi:10.1007/s35146-022-0852-4 -
Lott, P.; Deutschmann, O.
Heterogeneous chemical reactions—A cornerstone in emission reduction of local pollutants and greenhouse gases
2022. Proceedings of the Combustion Institute, 39 (3), 3183–3215. doi:10.1016/j.proci.2022.06.001 -
Wan, S.; Keller, K.; Lott, P.; Shirsath, A. B.; Tischer, S.; Häber, T.; Suntz, R.; Deutschmann, O.
Experimental and numerical investigation of NO oxidation on Pt/Al₂ O₃- and NOₓ storage on Pt/BaO/Al₂ O₃-catalysts
2022. Catalysis Science & Technology, 12 (14), 4456–4470. doi:10.1039/d2cy00572g -
Koch, S.; Hagen, F. P.; Büttner, L.; Hartmann, J.; Velji, A.; Kubach, H.; Koch, T.; Bockhorn, H.; Trimis, D.; Suntz, R.
Influence of Global Operating Parameters on the Reactivity of Soot Particles from Direct Injection Gasoline Engines
2022. Emission Control Science and Technology, 8 (1-2), 9–35. doi:10.1007/s40825-022-00211-y -
Moradi, M. H.; Brutsche, M.; Wenig, M.; Wagner, U.; Koch, T.
Marine route optimization using reinforcement learning approach to reduce fuel consumption and consequently minimize CO₂ emissions
2022. Ocean Engineering, 259, Article no: 111882. doi:10.1016/j.oceaneng.2022.111882 -
Wehrle, L.; Schmider, D.; Dailly, J.; Banerjee, A.; Deutschmann, O.
Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling
2022. Applied Energy, 317, Art.-Nr.: 119143. doi:10.1016/j.apenergy.2022.119143 -
Wang, J.; Sauter, E.; Nefedov, A.; Heißler, S.; Maurer, F.; Casapu, M.; Grunwaldt, J.-D.; Wang, Y.; Wöll, C.
Dynamic Structural Evolution of Ceria-Supported Pt Particles: A Thorough Spectroscopic Study
2022. The Journal of Physical Chemistry C, 126 (21), 9051–9058. doi:10.1021/acs.jpcc.2c02420 -
Kuntz, C.; Weickenmeier, H.; Börnhorst, M.; Deutschmann, O.
Deposition and decomposition of urea and its by-products on TiO and VWT-SCR catalysts
2022. International Journal of Heat and Fluid Flow, 95, Art.-Nr.: 108969. doi:10.1016/j.ijheatfluidflow.2022.108969 -
Maurer, F.; Beck, A.; Jelic, J.; Wang, W.; Mangold, S.; Stehle, M.; Wang, D.; Dolcet, P.; Gänzler, A. M.; Kübel, C.; Studt, F.; Casapu, M.; Grunwaldt, J.-D.
Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation
2022. ACS catalysis, 12, 2473–2486. doi:10.1021/acscatal.1c04565 -
Lott, P.; Wagner, U.; Koch, T.; Deutschmann, O.
Der Wasserstoffmotor – Chancen und Herausforderungen auf dem Weg zu einer dekarbonisierten Mobilität
2022. Chemie - Ingenieur - Technik, 94 (3), 217–229. doi:10.1002/cite.202100155 -
Moradi, M. H.; Heinz, A.; Wagner, U.; Koch, T.
Modeling the emissions of a gasoline engine during high-transient operation using machine learning approaches
2022. International journal of engine research, 23 (10), 1708–1716. doi:10.1177/14680874211032381
-
Plaß, A.; Maliha, M.; Kubach, H.; Koch, T.
Spray characterization of DMC and MeFo on multi-hole injectors for highly boosted DISI combustion engines
2021. International Journal of Engine Research, 23 (12), 2036–2045. doi:10.1177/14680874211038101 -
Warmuth, L.; Nails, G.; Casapu, M.; Wang, S.; Behrens, S.; Grunwaldt, J.-D.; Feldmann, C.
Catalytic co oxidation and H O direct synthesis over pd and pt-impregnated titania nanotubes
2021. Catalysts, 11 (8), 949. doi:10.3390/catal11080949 -
Doronkin, D. E.; Casapu, M.
Present Challenges in Catalytic Emission Control for Internal Combustion Engines
2021. Catalysts, 11 (9), Art.-Nr. 1019. doi:10.3390/catal11091019 -
Hagen, F. P.; Kretzler, D.; Häber, T.; Bockhorn, H.; Suntz, R.; Trimis, D.
Carbon nanostructure and reactivity of soot particles from non-intrusive methods based on UV-VIS spectroscopy and time-resolved laser-induced incandescence
2021. Carbon, 182, 634–654. doi:10.1016/j.carbon.2021.06.006 -
Bartenbach, D.; Wenzel, O.; Popescu, R.; Faden, L.-P.; Reiß, A.; Kaiser, M.; Zimina, A.; Grunwaldt, J.-D.; Gerthsen, D.; Feldmann, C.
Liquid‐Phase Synthesis of Highly Reactive Rare‐Earth Metal Nanoparticles
2021. Angewandte Chemie / International edition, 60 (32), 17373–17377. doi:10.1002/anie.202104955 -
Appel, D.; Hagen, F. P.; Wagner, U.; Koch, T.; Bockhorn, H.; Trimis, D.
Influence of Low Ambient Temperatures on the Exhaust Gas and Deposit Composition of Gasoline Engines
2021. Journal of energy resources technology, 143 (8), Art.-Nr.: 082306. doi:10.1115/1.4050492 -
Dolcet, P.; Maurer, F.; Casapu, M.; Grunwaldt, J.-D.
Insights into the Structural Dynamics of Pt/CeO Single-Site Catalysts during CO Oxidation
2021. Catalysts, 11 (5), Art.-Nr. 617. doi:10.3390/catal11050617 -
Maurer, F.; Gänzler, A.; Lott, P.; Betz, B.; Votsmeier, M.; Loridant, S.; Vernoux, P.; Murzin, V.; Bornmann, B.; Frahm, R.; Deutschmann, O.; Casapu, M.; Grunwaldt, J.-D.
Spatiotemporal Investigation of the Temperature and Structure of a Pt/CeO₂ Oxidation Catalyst for CO and Hydrocarbon Oxidation during Pulse Activation
2021. Industrial & engineering chemistry research, 60 (18), 6662–6675. doi:10.1021/acs.iecr.0c05798 -
Zengel, D.; Stehle, M.; Deutschmann, O.; Casapu, M.; Grunwaldt, J.-D.
Impact of gas phase reactions and catalyst poisons on the NH₃-SCR activity of a V₂O₅-WO₃/TiO₂ catalyst at pre-turbine position
2021. Applied catalysis / B, 288, Article no: 119991. doi:10.1016/j.apcatb.2021.119991 -
Lanza, A.; Zheng, L.; Matarrese, R.; Lietti, L.; Grunwaldt, J.-D.; Clave, S. A.; Collier, J.; Beretta, A.
HCl-doping of V/TiO₂-based catalysts reveals the promotion of NH₃-SCR and the rate limiting role of NO oxidative activation
2021. The chemical engineering journal, 416, Art.Nr.: 128933. doi:10.1016/j.cej.2021.128933 -
Zengel, D.; Barth, S.; Casapu, M.; Grunwaldt, J.-D.
The Impact of Pressure and Hydrocarbons on NOx Abatement over Cu- and Fe-Zeolites at Pre-Turbocharger Position
2021. Catalysts, 11 (3), 336. doi:10.3390/catal11030336 -
Zirwes, T.; Häber, T.; Zhang, F.; Kosaka, H.; Dreizler, A.; Steinhausen, M.; Hasse, C.; Stagni, A.; Trimis, D.; Suntz, R.; Bockhorn, H.
Numerical Study of Quenching Distances for Side-Wall Quenching Using Detailed Diffusion and Chemistry
2021. Flow, turbulence and combustion, 106, 649–679. doi:10.1007/s10494-020-00215-0 -
Zhang, F.; Zirwes, T.; Häber, T.; Bockhorn, H.; Trimis, D.; Suntz, R.
Near Wall Dynamics of Premixed Flames
2021. Proceedings of the Combustion Institute, 38 (2), 1955–1964. doi:10.1016/j.proci.2020.06.058
-
Maliha, M.; Kubach, H.; Koch, T.
Influence of the MeFo and DMC Content in the Fuel on the Gasoline DI Spray Characteristics with the Focus on Droplet Speed and Size
2021. SAE Technical Paper Series, Art.Nr. 1191, SAE International. doi:10.4271/2021-01-1191 -
Bertótiné Abai, A.; Zengel, D.; Janzer, C.; Maier, L.; Grunwaldt, J.-D.; Olzmann, M.; Deutschmann, O.
Effect of NO₂ on Gas-Phase Reactions in Lean NOₓ/NH₃/O₂/H₂O Mixtures at Conditions Relevant for Exhaust Gas Aftertreatment
2021. Automotive Technical Papers, SAE International. doi:10.4271/2021-01-5005