Components and Cells
Components and Cells addresses the scientific and technological issues associated with the integration and application of innovative materials and processes for a given electrochemical storage system and aims to develop a platform for the cost and resource-efficient production of batteries.
- High-capacity and high-voltage cathode materials will be transferred and adapted from the laboratory level according to the demands of an industrial process technology.
- Tailor-made particle and electrode structures will be designed and assembled according to innovativev 3D cell designs.
- Crucial stages in the process chain will be improved with respect to enhanced performance, but above all for a sustainable and cost-optimized production.
Publikationsliste
2024
Journal Articles
Jeschull, F.; Kataev, E.; Panasenko, I.; Njel, C.; Félix, R.; Maibach, J.
Why Half‐Cell Samples Provide Limited Insight Into the Aging Mechanisms of Potassium Batteries
2024. Advanced Energy Materials. doi:10.1002/aenm.202403811
Why Half‐Cell Samples Provide Limited Insight Into the Aging Mechanisms of Potassium Batteries
2024. Advanced Energy Materials. doi:10.1002/aenm.202403811
Schmidt, D.; Schöner, S.; Steinhoff, M. K.; Schierholz, R.; Steinhauer, K.; Thomas Daniel, D.; Speer, S.; Kretzschmar, A.; Jeschull, F.; Windmüller, A.; Tsai, C.-L.; Tempel, H.; Yu, S.; Eichel, R.-A.
Impact of Carbonization Temperature on the Structure and Li Deposition Behavior of 3D Dual Metal Carbon Fibers
2024. Small Structures. doi:10.1002/sstr.202400311
Impact of Carbonization Temperature on the Structure and Li Deposition Behavior of 3D Dual Metal Carbon Fibers
2024. Small Structures. doi:10.1002/sstr.202400311
Zhu, P.; Sterzl, Y.; Pfleging, W.
Impact of Laser Ablation Strategies on Electrochemical Performances of 3D Batteries Containing Aqueous Acid Processed Li(Ni0.6Mn0.2Co0.2)O2 Cathodes with High Mass Loading
2024. Batteries, 10 (10), Article no: 354. doi:10.3390/batteries10100354
Impact of Laser Ablation Strategies on Electrochemical Performances of 3D Batteries Containing Aqueous Acid Processed Li(Ni0.6Mn0.2Co0.2)O2 Cathodes with High Mass Loading
2024. Batteries, 10 (10), Article no: 354. doi:10.3390/batteries10100354
Talari, M.; Sarapulova, A.; Zemlyanushin, E.; Sabi, N.; Hofmann, A.; Trouillet, V.; Dsoke, S.
Exploring the possibility of aluminum plating/stripping from a non‐corrosive Al(OTf)3‐based electrolyte
2024. Batteries & Supercaps, Art.-Nr.: 202400317. doi:10.1002/batt.202400317
Exploring the possibility of aluminum plating/stripping from a non‐corrosive Al(OTf)3‐based electrolyte
2024. Batteries & Supercaps, Art.-Nr.: 202400317. doi:10.1002/batt.202400317
Kutlu, A. C.; Nötzel, D.; Hofmann, A.; Ziebert, C.; Seifert, H. J.; Mohsin, I. U.
Studies on 3D printing of Na3Zr2Si2PO12 ceramic solid electrolyte through Fused Filament Fabrication
2024. Electrochimica Acta, 503, Art.-Nr.: 144881. doi:10.1016/j.electacta.2024.144881
Studies on 3D printing of Na3Zr2Si2PO12 ceramic solid electrolyte through Fused Filament Fabrication
2024. Electrochimica Acta, 503, Art.-Nr.: 144881. doi:10.1016/j.electacta.2024.144881
Sbrascini, L.; Sarapulova, A.; Gauckler, C.; Gehrlein, L.; Jeschull, F.; Akçay, T.; Mönig, R.; Marinaro, M.; Nobili, F.; Dsoke, S.
Effect of Presodiation Additive on Structural and Interfacial Stability of Hard Carbon | P2‐Na Mn Ni_0.2} Mg O Full Cell
2024. Batteries & Supercaps, e202400207. doi:10.1002/batt.202400207
Effect of Presodiation Additive on Structural and Interfacial Stability of Hard Carbon | P2‐Na
2024. Batteries & Supercaps, e202400207. doi:10.1002/batt.202400207
Kim, H.; Sahebzadeh, A.; Seifert, H. J.; Ziebert, C.; Friedl, J.
Needle penetration studies on automotive lithium-ion battery cells: Influence of resistance between can and positive terminal on thermal runaway
2024. Journal of Power Sources, 592, Art.-Nr.: 233902. doi:10.1016/j.jpowsour.2023.233902
Needle penetration studies on automotive lithium-ion battery cells: Influence of resistance between can and positive terminal on thermal runaway
2024. Journal of Power Sources, 592, Art.-Nr.: 233902. doi:10.1016/j.jpowsour.2023.233902
Geuder, K.; Klick, S.; Finster, P.; Graff, K. M.; Winter, M.; Nowak, S.; Seifert, H. J.; Ziebert, C.
Influence of Vinylene Carbonate and Fluoroethylene Carbonate on Open Circuit and Floating SoC Calendar Aging of Lithium-Ion Batteries
2024. Batteries, 10 (8), Art.-Nr.: 275. doi:10.3390/batteries10080275
Influence of Vinylene Carbonate and Fluoroethylene Carbonate on Open Circuit and Floating SoC Calendar Aging of Lithium-Ion Batteries
2024. Batteries, 10 (8), Art.-Nr.: 275. doi:10.3390/batteries10080275
Madani, S. S.; Ziebert, C.; Vahdatkhah, P.; Sadrnezhaad, S. K.
Recent Progress of Deep Learning Methods for Health Monitoring of Lithium-Ion Batteries
2024. Batteries, 10 (6), Art.-Nr.: 204. doi:10.3390/batteries10060204
Recent Progress of Deep Learning Methods for Health Monitoring of Lithium-Ion Batteries
2024. Batteries, 10 (6), Art.-Nr.: 204. doi:10.3390/batteries10060204
Kolesnikov, T. I.; Voll, D.; Jeschull, F.; Theato, P.
Synthesis of Polyimide-PEO Copolymers: Toward thermally stable solid polymer electrolytes for Lithium-Metal batteries
2024. European Polymer Journal, 217, Art.-Nr.: 113315. doi:10.1016/j.eurpolymj.2024.113315
Synthesis of Polyimide-PEO Copolymers: Toward thermally stable solid polymer electrolytes for Lithium-Metal batteries
2024. European Polymer Journal, 217, Art.-Nr.: 113315. doi:10.1016/j.eurpolymj.2024.113315
Petursdottir, E.; Kohlhuber, M.; Ehrenberg, H.
Influence from Mechanical Stress on State of Health of Large Prismatic Lithium-Ion-Cells under Various Temperatures
2024. Journal of The Electrochemical Society, 171 (7), Art.-Nr.: 070510. doi:10.1149/1945-7111/ad5d1c
Influence from Mechanical Stress on State of Health of Large Prismatic Lithium-Ion-Cells under Various Temperatures
2024. Journal of The Electrochemical Society, 171 (7), Art.-Nr.: 070510. doi:10.1149/1945-7111/ad5d1c
Stüble, P.; Müller, C.; Bohn, N.; Müller, M.; Hofmann, A.; Akçay, T.; Klemens, J.; Koeppe, A.; Kolli, S.; Rajagopal, D.; Geßwein, H.; Schabel, W.; Scharfer, P.; Selzer, M.; Binder, J. R.; Smith, A.
From Powder to Pouch Cell: Setting up a Sodium‐Ion Battery Reference System Based on Na3V2(PO4)3/C and Hard Carbon
2024. Batteries & Supercaps, e202400406. doi:10.1002/batt.202400406
From Powder to Pouch Cell: Setting up a Sodium‐Ion Battery Reference System Based on Na3V2(PO4)3/C and Hard Carbon
2024. Batteries & Supercaps, e202400406. doi:10.1002/batt.202400406
Zimmermanns, R.; Luo, X.; Hansen, A.-L.; Sadowski, M.; Fu, Q.; Albe, K.; Indris, S.; Knapp, M.; Ehrenberg, H.
Influence of oxygen distribution on the Li-ion conductivity in oxy-sulfide glasses – taking a closer look
2024. Dalton Transactions, 53 (32), 13348–13363. doi:10.1039/d4dt01132e
Influence of oxygen distribution on the Li-ion conductivity in oxy-sulfide glasses – taking a closer look
2024. Dalton Transactions, 53 (32), 13348–13363. doi:10.1039/d4dt01132e
Mendoza-Sánchez, B.; Ladole, A. H.; Samperio-Niembro, E.; Mangold, S.; Knapp, M.; Tseng, E. N.; Persson, P. O. Å.; Douard, C.; Shuck, C. E.; Brousse, T.
On the Atomic Structure of Monolayer V C T and the Study of Charge Storage Processes in an Acidic Electrolyte Using SPEIS and in-situ X-ray Absorption Spectroscopy
2024. Energy Storage Materials, 71, 103566. doi:10.1016/j.ensm.2024.103566
On the Atomic Structure of Monolayer V
2024. Energy Storage Materials, 71, 103566. doi:10.1016/j.ensm.2024.103566
Thottungal, A.; Sriramajeyam, A.; Surendran, A.; Enale, H.; Sarapulova, A.; Dolotko, O.; Fu, Q.; Knapp, M.; Dixon, D.; Bhaskar, A.
Understanding the Correlation between Electrochemical Performance and Operating Mechanism of a Co-free Layered-Spinel Composite Cathode for Na-Ion Batteries
2024. ACS Applied Materials & Interfaces, 16 (21), 27254–27267. doi:10.1021/acsami.4c01140
Understanding the Correlation between Electrochemical Performance and Operating Mechanism of a Co-free Layered-Spinel Composite Cathode for Na-Ion Batteries
2024. ACS Applied Materials & Interfaces, 16 (21), 27254–27267. doi:10.1021/acsami.4c01140
Hua, W.; Chen, J.; Ferreira Sanchez, D.; Schwarz, B.; Yang, Y.; Senyshyn, A.; Wu, Z.; Shen, C.-H.; Knapp, M.; Ehrenberg, H.; Indris, S.; Guo, X.; Ouyang, X.
Probing Particle‐Carbon/Binder Degradation Behavior in Fatigued Layered Cathode Materials through Machine Learning Aided Diffraction Tomography
2024. Angewandte Chemie International Edition, 63 (30). doi:10.1002/anie.202403189
Probing Particle‐Carbon/Binder Degradation Behavior in Fatigued Layered Cathode Materials through Machine Learning Aided Diffraction Tomography
2024. Angewandte Chemie International Edition, 63 (30). doi:10.1002/anie.202403189
Schöner, S.; Schmidt, D.; Chen, X.; Dzieciol, K.; Schierholz, R.; Cao, P.; Ghamlouche, A.; Jeschull, F.; Windmüller, A.; Tsai, C.-L.; Liao, X.; Kungl, H.; Zhong, G.-M.; Chen, Y.; Tempel, H.; Yu, S.; Eichel, R.-A.
Chemical Prelithiated 3D Lithiophilic/-Phobic Interlayer Enables Long-Term Li Plating/Stripping
2024. ACS Nano, 18 (27), 17924–17938. doi:10.1021/acsnano.4c04507
Chemical Prelithiated 3D Lithiophilic/-Phobic Interlayer Enables Long-Term Li Plating/Stripping
2024. ACS Nano, 18 (27), 17924–17938. doi:10.1021/acsnano.4c04507
Rezaei, M.; Sakong, S.; Groß, A.
Sodium Triflate Water-in-Salt Electrolytes in Advanced Battery Applications: A First-Principles-Based Molecular Dynamics Study
2024. ACS Applied Materials & Interfaces, 16 (25), 32169–32188. doi:10.1021/acsami.4c01449
Sodium Triflate Water-in-Salt Electrolytes in Advanced Battery Applications: A First-Principles-Based Molecular Dynamics Study
2024. ACS Applied Materials & Interfaces, 16 (25), 32169–32188. doi:10.1021/acsami.4c01449
Jeschull, F.
Moving Down Group 1: Analytical Challenges and Current Trends for Solid Polymer Electrolytes in Post‐Li Battery Applications
2024. ChemElectroChem, Art.-Nr.: 202400254. doi:10.1002/celc.202400254
Moving Down Group 1: Analytical Challenges and Current Trends for Solid Polymer Electrolytes in Post‐Li Battery Applications
2024. ChemElectroChem, Art.-Nr.: 202400254. doi:10.1002/celc.202400254
Naumann, J.; Müller, M.; Bohn, N.; Binder, J. R.; Kamlah, M.; Gan, Y.
Uncovering Ionic Transport Paths within Hierarchically Structured Battery Electrodes
2024. ACS Applied Energy Materials, 7 (11), 4786–4793. doi:10.1021/acsaem.4c00505
Uncovering Ionic Transport Paths within Hierarchically Structured Battery Electrodes
2024. ACS Applied Energy Materials, 7 (11), 4786–4793. doi:10.1021/acsaem.4c00505
Sterzl, Y.; Pfleging, W.
Optimizing Structural Patterns for 3D Electrodes in Lithium-Ion Batteries for Enhanced Fast-Charging Capability and Reduced Lithium Plating
2024. Batteries, 10 (5), Art.-Nr.: 160. doi:10.3390/batteries10050160
Optimizing Structural Patterns for 3D Electrodes in Lithium-Ion Batteries for Enhanced Fast-Charging Capability and Reduced Lithium Plating
2024. Batteries, 10 (5), Art.-Nr.: 160. doi:10.3390/batteries10050160
Bogenrieder, S. E.; Beßner, J.; Engstfeld, A. K.; Jacob, T.
First-Principles Study on the Structural and Magnetic Properties of Low-Index Cu O and CuO Surfaces
2024. The Journal of Physical Chemistry C, 128 (23), 9693–9704. doi:10.1021/acs.jpcc.4c01102
First-Principles Study on the Structural and Magnetic Properties of Low-Index Cu
2024. The Journal of Physical Chemistry C, 128 (23), 9693–9704. doi:10.1021/acs.jpcc.4c01102
Otte, S.; Stoffels, M.; Fleischer, J.
Vergleich von Industrie-4.0-Technologien - Identifikation von Use Cases für Technologien wie Cloud und Edge Computing sowie Blockchain in der Batteriezellproduktion
2024. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 119 (3), 171–175. doi:10.1515/zwf-2024-1028
Vergleich von Industrie-4.0-Technologien - Identifikation von Use Cases für Technologien wie Cloud und Edge Computing sowie Blockchain in der Batteriezellproduktion
2024. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 119 (3), 171–175. doi:10.1515/zwf-2024-1028
Sheng, H.; Graczyk-Zajac, M.; Tian, H.; Qu, F.; Zhang, Y.; Dürrschnabel, M.; Weidenkaff, A.; Riedel, R.
Harnessing Regenerated Graphite from Spent Lithium‐Ion Batteries to Enhance the Performance of Sulfur Cathode in Lithium‐Sulfur Batteries
2024. Batteries & Supercaps, 7 (6), Art.-Nr.: e202400003. doi:10.1002/batt.202400003
Harnessing Regenerated Graphite from Spent Lithium‐Ion Batteries to Enhance the Performance of Sulfur Cathode in Lithium‐Sulfur Batteries
2024. Batteries & Supercaps, 7 (6), Art.-Nr.: e202400003. doi:10.1002/batt.202400003
Xing, S.; Khudyshkina, A.; Rauska, U.-C.; Butzelaar, A. J.; Voll, D.; Theato, P.; Tübke, J.; Jeschull, F.
Degradation of Styrene-Poly(ethylene oxide)-Based Block Copolymer Electrolytes at the Na and K Negative Electrode Studied by Microcalorimetry and Impedance Spectroscopy
2024. Journal of The Electrochemical Society, 171 (4), 040516. doi:10.1149/1945-7111/ad3b72
Degradation of Styrene-Poly(ethylene oxide)-Based Block Copolymer Electrolytes at the Na and K Negative Electrode Studied by Microcalorimetry and Impedance Spectroscopy
2024. Journal of The Electrochemical Society, 171 (4), 040516. doi:10.1149/1945-7111/ad3b72
Weber, A.; Keim, N.; Gyulai, A.; Müller, M.; Colombo, F.; Bauer, W.; Ehrenberg, H.
The Role of Surface Free Energy in Binder Distribution and Adhesion Strength of Aqueously Processed LiNi Mn O Cathodes
2024. Journal of The Electrochemical Society, 171 (4), Art.-Nr.: 040523. doi:10.1149/1945-7111/ad3a24
The Role of Surface Free Energy in Binder Distribution and Adhesion Strength of Aqueously Processed LiNi
2024. Journal of The Electrochemical Society, 171 (4), Art.-Nr.: 040523. doi:10.1149/1945-7111/ad3a24
Baumann, M. J.; Peters, J.; Häringer, M.; Schmidt, M.; Schneider, L.; Bauer, W.; Binder, J. R.; Weil, M.
Prospective Hazard and Toxicity Screening of Sodium-ion Battery Cathode Materials
2024. Green Chemistry, 26 (11), 6532–6552. doi:10.1039/D3GC05098J
Prospective Hazard and Toxicity Screening of Sodium-ion Battery Cathode Materials
2024. Green Chemistry, 26 (11), 6532–6552. doi:10.1039/D3GC05098J
Schmidt, M.; Mereacre, V.; Geßwein, H.; Bohn, N.; Indris, S.; Binder, J. R.
High Performance of Porous, Hierarchically Structured P2‐Na Al − Ni − Fe Mn O Cathode Materials
2024. Advanced Energy Materials, 14 (19), Art.-Nr.: 2301854. doi:10.1002/aenm.202301854
High Performance of Porous, Hierarchically Structured P2‐Na
2024. Advanced Energy Materials, 14 (19), Art.-Nr.: 2301854. doi:10.1002/aenm.202301854
Neumann, M.; Philipp, T.; Häringer, M.; Neusser, G.; Binder, J. R.; Kranz, C.
Stochastic 3D Modeling of Nanostructured NVP/C Active Material Particles for Sodium‐Ion Batteries
2024. Batteries & Supercaps, 7 (4). doi:10.1002/batt.202300409
Stochastic 3D Modeling of Nanostructured NVP/C Active Material Particles for Sodium‐Ion Batteries
2024. Batteries & Supercaps, 7 (4). doi:10.1002/batt.202300409
Zhu, P.; Ebert, B.; Smyrek, P.; Pfleging, W.
The Impact of Structural Pattern Types on the Electrochemical Performance of Ultra-Thick NMC 622 Electrodes for Lithium-Ion Batteries
2024. Batteries, 10 (2), 58. doi:10.3390/batteries10020058
The Impact of Structural Pattern Types on the Electrochemical Performance of Ultra-Thick NMC 622 Electrodes for Lithium-Ion Batteries
2024. Batteries, 10 (2), 58. doi:10.3390/batteries10020058
Zech, F.; Jung, C.; Jacob, T.; Kirchhoff, F.
Causes and Consequences of Coronavirus Spike Protein Variability
2024. Viruses, 16 (2), Art.-Nr.: 177. doi:10.3390/v16020177
Causes and Consequences of Coronavirus Spike Protein Variability
2024. Viruses, 16 (2), Art.-Nr.: 177. doi:10.3390/v16020177
Döhn, J.; Groß, A.
Computational Screening of Oxide Perovskites as Insertion‐Type Cathode Material
2024. Advanced Energy and Sustainability Research, 5 (3), Art.-Nr.: 2300204. doi:10.1002/aesr.202300204
Computational Screening of Oxide Perovskites as Insertion‐Type Cathode Material
2024. Advanced Energy and Sustainability Research, 5 (3), Art.-Nr.: 2300204. doi:10.1002/aesr.202300204
Bauer, W.; Müller, M.; Schneider, L.; Häringer, M.; Bohn, N.; Binder, J. R.; Klemens, J.; Scharfer, P.; Schabel, W.; Ehrenberg, H.
Using Hierarchically Structured, Nanoporous Particles as Building Blocks for NCM111 Cathodes
2024. Nanomaterials, 14 (2), Art.-Nr.: 134. doi:10.3390/nano14020134
Using Hierarchically Structured, Nanoporous Particles as Building Blocks for NCM111 Cathodes
2024. Nanomaterials, 14 (2), Art.-Nr.: 134. doi:10.3390/nano14020134
Wurba, A.-K.; Altmann, L.; Fleischer, J.
Analysis of longitudinal wrinkle formation during calendering of NMC811 cathodes under variation of different process parameters
2024. Production Engineering, 18, 497–506. doi:10.1007/s11740-023-01258-8
Analysis of longitudinal wrinkle formation during calendering of NMC811 cathodes under variation of different process parameters
2024. Production Engineering, 18, 497–506. doi:10.1007/s11740-023-01258-8
Husseini, K.; Boschert, L.; Schabel, S.; Fleischer, J.
Modeling machine-side influences on the Z-Folding process of battery cells
2024. Production Engineering, 18, 615–623. doi:10.1007/s11740-023-01248-w
Modeling machine-side influences on the Z-Folding process of battery cells
2024. Production Engineering, 18, 615–623. doi:10.1007/s11740-023-01248-w
Kutter, M.; Greve, C.; Maier, M.; Schilling, M.; Mauel, A.; Hilgert, A.; Hoffmann, H.; Hagemeier, W.; Rosin, A.; Muggli, M.; Zeis, R.; Senker, J.; Böhm, T.; Herzig, E. M.; Gerdes, T.; Roth, C.
Recycling of perfluorosulfonic acid-based membranes and their Re-application in PEM fuel cells
2024. Journal of Membrane Science, 693, Art.-Nr.: 122370. doi:10.1016/j.memsci.2023.122370
Recycling of perfluorosulfonic acid-based membranes and their Re-application in PEM fuel cells
2024. Journal of Membrane Science, 693, Art.-Nr.: 122370. doi:10.1016/j.memsci.2023.122370
Häringer, M.; Geßwein, H.; Bohn, N.; Ehrenberg, H.; Binder, J. R.
Influence of Process Parameters on the Electrochemical Properties of Hierarchically Structured Na₃V₂(PO₄)₃/C Composites
2024. ChemElectroChem, 11 (3), e202300401. doi:10.1002/celc.202300401
Influence of Process Parameters on the Electrochemical Properties of Hierarchically Structured Na₃V₂(PO₄)₃/C Composites
2024. ChemElectroChem, 11 (3), e202300401. doi:10.1002/celc.202300401
Kutlu, A. C.; Nötzel, D.; Ziebert, C.; Seifert, H. J.; Ul Mohsin, I.
Cover Feature: 3D Printing of Na1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte via Fused Filament Fabrication for All-Solid-State Sodium-Ion Batteries (Batteries & Supercaps 1/2024)
2024. Batteries & Supercaps, 7 (1), Art.-Nr.: e202300577. doi:10.1002/batt.202300577
Cover Feature: 3D Printing of Na1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte via Fused Filament Fabrication for All-Solid-State Sodium-Ion Batteries (Batteries & Supercaps 1/2024)
2024. Batteries & Supercaps, 7 (1), Art.-Nr.: e202300577. doi:10.1002/batt.202300577
Schuster, P. A.; Uhl, M.; Kissmann, A.-K.; Jansen, F.; Geng, T.; Ceblin, M. U.; Spiewok, S.; Rosenau, F.; Jacob, T.; Kuehne, A. J. C.
Conjugated Polyimidazole Nanoparticles as Biodegradable Electrode Materials for Organic Batteries
2024. Advanced Electronic Materials, 10 (4), Art.-Nr.: 2300464. doi:10.1002/aelm.202300464
Conjugated Polyimidazole Nanoparticles as Biodegradable Electrode Materials for Organic Batteries
2024. Advanced Electronic Materials, 10 (4), Art.-Nr.: 2300464. doi:10.1002/aelm.202300464
Linz, M.; Bühner, F.; Paulus, D.; Hennerici, L.; Guo, Y.; Mereacre, V.; Mansfeld, U.; Seipenbusch, M.; Kita, J.; Moos, R.
Revealing the Deposition Mechanism of the Powder Aerosol Deposition Method Using Ceramic Oxide Core–Shell Particles
2024. Advanced Materials, 36 (7), Art.-Nr.: 2308294. doi:10.1002/adma.202308294
Revealing the Deposition Mechanism of the Powder Aerosol Deposition Method Using Ceramic Oxide Core–Shell Particles
2024. Advanced Materials, 36 (7), Art.-Nr.: 2308294. doi:10.1002/adma.202308294
Pateras Pescara, L.; Jaegermann, A.; Mereacre, V.; Cronau, M.; Binder, J. R.; Roling, B.
Deciphering the Nature of an Overlooked Rate‐Limiting Interphase in High‐Voltage LiNi Mn O Cathodes: A Combined Electrochemical Impedance, Scanning Electron Microscopy and Secondary Ion Mass Spectrometry Study
2024. Batteries & Supercaps, 7 (2), Art.-Nr.: e202300352. doi:10.1002/batt.202300352
Deciphering the Nature of an Overlooked Rate‐Limiting Interphase in High‐Voltage LiNi
2024. Batteries & Supercaps, 7 (2), Art.-Nr.: e202300352. doi:10.1002/batt.202300352
Uhl, M.; Sadeeda; Penert, P.; Schuster, P. A.; Schick, B. W.; Muench, S.; Farkas, A.; Schubert, U. S.; Esser, B.; Kuehne, A. J. C.; Jacob, T.
All‐Organic Battery Based on Deep Eutectic Solvent and Redox‐Active Polymers
2024. ChemSusChem, 17 (1), Art.-Nr.: e202301057. doi:10.1002/cssc.202301057
All‐Organic Battery Based on Deep Eutectic Solvent and Redox‐Active Polymers
2024. ChemSusChem, 17 (1), Art.-Nr.: e202301057. doi:10.1002/cssc.202301057
Stüble, P.; Müller, C.; Klemens, J.; Scharfer, P.; Schabel, W.; Häringer, M.; Binder, J. R.; Hofmann, A.; Smith, A.
Enabling Long‐term Cycling Stability of Na₃V₂(PO₄)₃ /C vs . Hard Carbon Full‐cells
2024. Batteries and Supercaps, 7 (2), Art.-Nr. e202300375. doi:10.1002/batt.202300375
Enabling Long‐term Cycling Stability of Na₃V₂(PO₄)₃ /C vs . Hard Carbon Full‐cells
2024. Batteries and Supercaps, 7 (2), Art.-Nr. e202300375. doi:10.1002/batt.202300375
Hassan, H. K.; Hoffmann, P.; Jacob, T.
Effect of Guest Solvents on the Ionic Conductivity and Electrochemical Performance of Metal‐Organic Framework‐Based Magnesium Semi‐Solid Electrolytes
2024. ChemSusChem, 17 (5), Art.Nr.: e202301362. doi:10.1002/cssc.202301362
Effect of Guest Solvents on the Ionic Conductivity and Electrochemical Performance of Metal‐Organic Framework‐Based Magnesium Semi‐Solid Electrolytes
2024. ChemSusChem, 17 (5), Art.Nr.: e202301362. doi:10.1002/cssc.202301362
Sotoudeh, M.; Baumgart, S.; Dillenz, M.; Döhn, J.; Forster-Tonigold, K.; Helmbrecht, K.; Stottmeister, D.; Groß, A.
Ion Mobility in Crystalline Battery Materials
2024. Advanced Energy Materials, 14 (4), Art.Nr.: 2302550. doi:10.1002/aenm.202302550
Ion Mobility in Crystalline Battery Materials
2024. Advanced Energy Materials, 14 (4), Art.Nr.: 2302550. doi:10.1002/aenm.202302550
Schick, B. W.; Hou, X.; Vanoppen, V.; Uhl, M.; Kruck, M.; Berg, E. J.; Jacob, T.
Revealing the Structural Evolution of Electrode/Electrolyte Interphase Formation during Magnesium Plating and Stripping with operando EQCM‐D
2024. ChemSusChem, 17 (4), Art.-Nr.: e202301269. doi:10.1002/cssc.202301269
Revealing the Structural Evolution of Electrode/Electrolyte Interphase Formation during Magnesium Plating and Stripping with operando EQCM‐D
2024. ChemSusChem, 17 (4), Art.-Nr.: e202301269. doi:10.1002/cssc.202301269
Rahide, F.; Palanisamy, K.; Flowers, J. K.; Hao, J.; Stein, H. S.; Kranz, C.; Ehrenberg, H.; Dsoke, S.
Modification of Al Surface via Acidic Treatment and its Impact on Plating and Stripping
2024. ChemSusChem, 17 (5), Art.Nr.: e202301142. doi:10.1002/cssc.202301142
Modification of Al Surface via Acidic Treatment and its Impact on Plating and Stripping
2024. ChemSusChem, 17 (5), Art.Nr.: e202301142. doi:10.1002/cssc.202301142
Khudyshkina, A. D.; Rauska, U.-C.; Butzelaar, A. J.; Hoffmann, M.; Wilhelm, M.; Theato, P.; Jeschull, F.
Impact of Nano‐sized Inorganic Fillers on PEO‐based Electrolytes for Potassium Batteries
2024. Batteries and Supercaps, 7 (1), Art.-Nr.: e202300404. doi:10.1002/batt.202300404
Impact of Nano‐sized Inorganic Fillers on PEO‐based Electrolytes for Potassium Batteries
2024. Batteries and Supercaps, 7 (1), Art.-Nr.: e202300404. doi:10.1002/batt.202300404
Kutlu, A. C.; Nötzel, D.; Ziebert, C.; Seifert, H. J.; Mohsin, I. U.
3D Printing of Na Al Ti (PO ) Solid Electrolyte via Fused Filament Fabrication for All‐Solid‐State Sodium‐Ion Batteries
2024. Batteries & Supercaps, 7 (1), e202300357. doi:10.1002/batt.202300357
3D Printing of Na
2024. Batteries & Supercaps, 7 (1), e202300357. doi:10.1002/batt.202300357
Conference Papers
Reinhold, C.; Pfleging, W.
Ultrafast laser ablation of high-voltage cathodes for next generation 3D lithium-ion batteries
2024. Laser and Photonics for Advanced Manufacturing. Ed.: F. Courvoisier, 19, SPIE. doi:10.1117/12.3022349
Ultrafast laser ablation of high-voltage cathodes for next generation 3D lithium-ion batteries
2024. Laser and Photonics for Advanced Manufacturing. Ed.: F. Courvoisier, 19, SPIE. doi:10.1117/12.3022349
Straßburger, N.; Zhu, P.; Pfleging, W.
Hierarchical structuring of cathodes and anodes for lithium-ion batteries
2024. S. Lecler, W. Pfleging & F. Courvoisier (Eds.), Laser + Photonics for Advanced Manufacturing, 20, SPIE. doi:10.1117/12.3022446
Hierarchical structuring of cathodes and anodes for lithium-ion batteries
2024. S. Lecler, W. Pfleging & F. Courvoisier (Eds.), Laser + Photonics for Advanced Manufacturing, 20, SPIE. doi:10.1117/12.3022446
Wurba, A.-K.; Goldschmidt, R.; Fleischer, J.
Comparison of Longitudinal Wrinkle Formation During Calendering of NMC811 and LFP Cathodes
2024. 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), 1–8, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586729
Comparison of Longitudinal Wrinkle Formation During Calendering of NMC811 and LFP Cathodes
2024. 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), 1–8, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586729
Schmidgruber, N.; Smith, A.; Löwe, R.; Schabel, S.; Fleischer, J.
Investigation on Defects of Battery Pouch Cell Housing
2024. 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), 1–5, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586720
Investigation on Defects of Battery Pouch Cell Housing
2024. 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), 1–5, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586720
Madani, S.; Hajihosseini, M.; Ziebert, C.; Nandhakumar, I.
Battery thermal management system for greater lifetime and safety: mini-review
2024. 23rd International Scientific Conference Engineering for Rural Development Proceedings, Mitau, 22nd-24th May 2024, 1073 – 1089, Latvia University of Life Sciences and Technologies, Faculty of Engineering and Information Technologies. doi:10.22616/ERDev.2024.23.TF225
Battery thermal management system for greater lifetime and safety: mini-review
2024. 23rd International Scientific Conference Engineering for Rural Development Proceedings, Mitau, 22nd-24th May 2024, 1073 – 1089, Latvia University of Life Sciences and Technologies, Faculty of Engineering and Information Technologies. doi:10.22616/ERDev.2024.23.TF225
Otte, S.; Reuscher, L.; Keller, D.; Fleischer, J.
Blockchain architecture for process-level traceability of continuous mixing process in battery cell production
2024. 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS). Ed..: J. Franke 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), Bamberg, Germany, 05-06 June 2024, 1–14, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586718
Blockchain architecture for process-level traceability of continuous mixing process in battery cell production
2024. 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS). Ed..: J. Franke 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), Bamberg, Germany, 05-06 June 2024, 1–14, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586718
Henschel, S.; Schmidgruber, N.; Schabel, S.; Kößler, F.; Mayer, D.; Fleischer, J.
Cost Modell for Agile Battery Cell Manufacturing
2024. 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), Bamberg, 5th-6th June 2024, 1–6, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586719
Cost Modell for Agile Battery Cell Manufacturing
2024. 2024 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), Bamberg, 5th-6th June 2024, 1–6, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586719
Kößler, F.; Hertweck, R.; Fleischer, J.
Indentation tests on battery electrodes to estimate the target gap of battery calenders
2024. 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), 5th - 6th June 2024, Bamberg, 1–6, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586727
Indentation tests on battery electrodes to estimate the target gap of battery calenders
2024. 1st International Conference on Production Technologies and Systems for E-Mobility (EPTS), 5th - 6th June 2024, Bamberg, 1–6, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/EPTS61482.2024.10586727
Sterzl, Y.; Pfleging, W.
An electrode design study: laser structuring of anodes for fast-charging of batteries
2024. R. Kling, W. Pfleging & K. Sugioka (Eds.), SPIE Photonics West LASE 2024, Laser-based Micro- and Nanoprocessing XVIII, San Francisco, CA, 27th January -1st February 2024, 38, SPIE. doi:10.1117/12.3002505
An electrode design study: laser structuring of anodes for fast-charging of batteries
2024. R. Kling, W. Pfleging & K. Sugioka (Eds.), SPIE Photonics West LASE 2024, Laser-based Micro- and Nanoprocessing XVIII, San Francisco, CA, 27th January -1st February 2024, 38, SPIE. doi:10.1117/12.3002505
Rist, U.; Sterzl, Y.; Pfleging, W.
Laser-induced forward transfer (LIFT) process for flexible construction of advanced 3D silicon anode designs in high-energy lithium-ion batteries
2024. R. Kling, W. Pfleging & K. Sugioka (Eds.), SPIE Photonics West LASE 2024, Laser-based Micro- and Nanoprocessing XVIII, San Francisco, CA, 27th January -1st February 2024, 30, SPIE. doi:10.1117/12.3003087
Laser-induced forward transfer (LIFT) process for flexible construction of advanced 3D silicon anode designs in high-energy lithium-ion batteries
2024. R. Kling, W. Pfleging & K. Sugioka (Eds.), SPIE Photonics West LASE 2024, Laser-based Micro- and Nanoprocessing XVIII, San Francisco, CA, 27th January -1st February 2024, 30, SPIE. doi:10.1117/12.3003087
2023
Journal Articles
Sternberg, U.; Witter, R.
Simulation of oriented NMR spectra: Combining molecular dynamics and chemical shift tensor calculations
2023. Magnetic Resonance in Chemistry. doi:10.1002/mrc.5403
Simulation of oriented NMR spectra: Combining molecular dynamics and chemical shift tensor calculations
2023. Magnetic Resonance in Chemistry. doi:10.1002/mrc.5403
Ullah, S.; Ohsawa, O.; Ishaq, T.; Hashmi, M.; Sarwar, M. N.; Zhu, C.; Ge, Y.; Jang, Y.; Kim, I. S.
Fabrication of Novel Hemp Charcoal Nanofiber Membrane for Effectual Adsorption of Heavy Metal Ions from Wastewater
2023. Sustainability, 15 (12), Article no: 9365. doi:10.3390/su15129365
Fabrication of Novel Hemp Charcoal Nanofiber Membrane for Effectual Adsorption of Heavy Metal Ions from Wastewater
2023. Sustainability, 15 (12), Article no: 9365. doi:10.3390/su15129365
Cetindere, S.; Ardic Alidagi, H.; Anjass, M.
Two novel Anderson-type polyoxometalate based MnIII complexes constructed from pyrene derivatives: Synthesis, photophysical, and electrochemical properties
2023. Inorganica Chimica Acta, 545, 121280. doi:10.1016/j.ica.2022.121280
Two novel Anderson-type polyoxometalate based MnIII complexes constructed from pyrene derivatives: Synthesis, photophysical, and electrochemical properties
2023. Inorganica Chimica Acta, 545, 121280. doi:10.1016/j.ica.2022.121280
Groß, A.
Challenges in the modeling of elementary steps in electrocatalysis
2023. Current Opinion in Electrochemistry, 37, 101170. doi:10.1016/j.coelec.2022.101170
Challenges in the modeling of elementary steps in electrocatalysis
2023. Current Opinion in Electrochemistry, 37, 101170. doi:10.1016/j.coelec.2022.101170
Arya, N.; Philipp, T.; Greiner, S.; Steiner, M.; Kranz, C.; Anjass, M.
Reversible Electrodeposition of Potassium‐bridged Molecular Vanadium Oxides: A New Approach Towards Multi‐Electron Storage
2023. Angewandte Chemie International Edition, 62 (35). doi:10.1002/anie.202306170
Reversible Electrodeposition of Potassium‐bridged Molecular Vanadium Oxides: A New Approach Towards Multi‐Electron Storage
2023. Angewandte Chemie International Edition, 62 (35). doi:10.1002/anie.202306170
Stehle, P.; Rutz, D.; Bazzoun, A. M.; Seidl, C.; Bauer, I.; Anjass, M.
Application of Perforated Reference Electrodes in Small Cell Formats for Rate Tests and Electrochemical Impedance Spectroscopy
2023. Energy Technology, 11 (8), Article no: 2300278. doi:10.1002/ente.202300278
Application of Perforated Reference Electrodes in Small Cell Formats for Rate Tests and Electrochemical Impedance Spectroscopy
2023. Energy Technology, 11 (8), Article no: 2300278. doi:10.1002/ente.202300278
Ghosh, M.; Sorsche, D.; Binte Ahmed, R.; Anjass, M.
Stabilizing Decavanadate Cluster as Electrode Material in Sodium and Lithium‐ion Batteries
2023. ChemSusChem, 16 (24). doi:10.1002/cssc.202300631
Stabilizing Decavanadate Cluster as Electrode Material in Sodium and Lithium‐ion Batteries
2023. ChemSusChem, 16 (24). doi:10.1002/cssc.202300631
Varvaris, K. L.; Esau, D.; Schuett, F. M.; Jacob, T.; Jerkiewicz, G.
Surface Structure Dependence of Electrochemical Processes at Monocrystalline Nickel Electrodes. Part 1: The Hydrogen Evolution Reaction
2023. The Journal of Physical Chemistry C, 127 (30), 14711–14722. doi:10.1021/acs.jpcc.3c01698
Surface Structure Dependence of Electrochemical Processes at Monocrystalline Nickel Electrodes. Part 1: The Hydrogen Evolution Reaction
2023. The Journal of Physical Chemistry C, 127 (30), 14711–14722. doi:10.1021/acs.jpcc.3c01698
Putra, M. H.; Bagemihl, B.; Rau, S.; Groß, A.
Prediction of Strong Solvatochromism in a Molecular Photocatalyst
2023. Chemistry – A European Journal, Art.-Nr.: e202302643. doi:10.1002/chem.202302643
Prediction of Strong Solvatochromism in a Molecular Photocatalyst
2023. Chemistry – A European Journal, Art.-Nr.: e202302643. doi:10.1002/chem.202302643
Jung, C. K.; Münch, J.; Jacob, T.
Conformational States of the CXCR4 Inhibitor Peptide EPI-X4—A Theoretical Analysis
2023. International Journal of Molecular Sciences, 24 (22), Art.-Nr.: 16229. doi:10.3390/ijms242216229
Conformational States of the CXCR4 Inhibitor Peptide EPI-X4—A Theoretical Analysis
2023. International Journal of Molecular Sciences, 24 (22), Art.-Nr.: 16229. doi:10.3390/ijms242216229
Elnagar, M. M.; Liessem, J.; Im, C.; Mitoraj, D.; Kibler, L. A.; Neumann, C.; Turchanin, A.; Leiter, R.; Kaiser, U.; Jacob, T.; Krivtsov, I.; Beranek, R.
Water-soluble ionic carbon nitride as unconventional stabilizer for highly catalytically active ultrafine gold nanoparticles
2023. Nanoscale, 15 (47), 19268–19281. doi:10.1039/d3nr03375a
Water-soluble ionic carbon nitride as unconventional stabilizer for highly catalytically active ultrafine gold nanoparticles
2023. Nanoscale, 15 (47), 19268–19281. doi:10.1039/d3nr03375a
Stottmeister, D.; Wildersinn, L.; Maibach, J.; Hofmann, A.; Jeschull, F.; Groß, A.
Unraveling Propylene Oxide Formation in Alkali Metal Batteries
2023. ChemSusChem, 17 (3), Art.Nr.: e202300995. doi:10.1002/cssc.202300995
Unraveling Propylene Oxide Formation in Alkali Metal Batteries
2023. ChemSusChem, 17 (3), Art.Nr.: e202300995. doi:10.1002/cssc.202300995
Schilling, M.; Eifert, L.; Köble, K.; Jaugstetter, M.; Bevilacqua, N.; Fahy, K. F.; Tschulik, K.; Bazylak, A.; Zeis, R.
Investigating the Influence of Treatments on Carbon Felts for Vanadium Redox Flow Batteries
2023. ChemSusChem, 17 (1), Art.-Nr.: e202301063. doi:10.1002/cssc.202301063
Investigating the Influence of Treatments on Carbon Felts for Vanadium Redox Flow Batteries
2023. ChemSusChem, 17 (1), Art.-Nr.: e202301063. doi:10.1002/cssc.202301063
Colombo, F.; Müller, M.; Weber, A.; Keim, N.; Jeschull, F.; Bauer, W.; Ehrenberg, H.
Electrochemical investigation of fluorine-containing Li-salts as slurry cathode additives for tunable rheology in super high solid content NMP slurries
2023. Energy Advances, 2, 2093–2108. doi:10.1039/d3ya00246b
Electrochemical investigation of fluorine-containing Li-salts as slurry cathode additives for tunable rheology in super high solid content NMP slurries
2023. Energy Advances, 2, 2093–2108. doi:10.1039/d3ya00246b
Cheng, R.; Liu, J.; Manasa, P.; Zhou, M.; Guan, Y.; Zhang, K.; Lin, X.; Rosei, F.; Pimerzin, A. A.; Seifert, H. J.; Xu, F.; Sun, L.; Cai, D.; Zeng, J.; Cao, Z.; Pan, H.
Mechanism and thermal effects of phytic acid-assisted porous carbon sheets for high-performance lithium–sulfur batteries
2023. Inorganic Chemistry Frontiers, 10, 7038–7053. doi:10.1039/D3QI01926H
Mechanism and thermal effects of phytic acid-assisted porous carbon sheets for high-performance lithium–sulfur batteries
2023. Inorganic Chemistry Frontiers, 10, 7038–7053. doi:10.1039/D3QI01926H
Yang, A.; Yao, K.; Schaller, M.; Dashjav, E.; Li, H.; Zhao, S.; Zhao, S.; Zhang, Q.; Etter, M.; Shen, X.; Song, H.; Lu, Q.; Ye, R.; Moudrakovski, I.; Pang, Q.; Indris, S.; Wang, X.; Ma, Q.; Tietz, F.; Chen, J.; Guillon, O.
Enhanced room-temperature Na+ ionic conductivity in Na Y Zr Si O
2023. eScience, 3 (6), Art.-Nr.: 100175. doi:10.1016/j.esci.2023.100175
Enhanced room-temperature Na+ ionic conductivity in Na
2023. eScience, 3 (6), Art.-Nr.: 100175. doi:10.1016/j.esci.2023.100175
Madani, S. S.; Ziebert, C.; Marzband, M.
Thermal Characteristics and Safety Aspects of Lithium-Ion Batteries: An In-Depth Review
2023. Symmetry, 15 (10), Article no: 1925. doi:10.3390/sym15101925
Thermal Characteristics and Safety Aspects of Lithium-Ion Batteries: An In-Depth Review
2023. Symmetry, 15 (10), Article no: 1925. doi:10.3390/sym15101925
Yang, H.; Menezes, P. V.; Dai, G.; Vijaykumar, G.; Chen, Z.; Al-Shakran, M.; Jacob, T.; Driess, M.; Menezes, P. W.
Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics
2023. Applied Catalysis B: Environmental, 324, 122249. doi:10.1016/j.apcatb.2022.122249
Activation of nickel foam through in-liquid plasma-induced phosphorus incorporation for efficient quasi-industrial water oxidation and selective oxygenation of organics
2023. Applied Catalysis B: Environmental, 324, 122249. doi:10.1016/j.apcatb.2022.122249
Meyer, A.; Zhu, P.; Smith, A.; Pfleging, W.
Gaining a New Technological Readiness Level for Laser-Structured Electrodes in High-Capacity Lithium-Ion Pouch Cells
2023. Batteries, 9 (11), Article no: 548. doi:10.3390/batteries9110548
Gaining a New Technological Readiness Level for Laser-Structured Electrodes in High-Capacity Lithium-Ion Pouch Cells
2023. Batteries, 9 (11), Article no: 548. doi:10.3390/batteries9110548
Naumann, J.; Bohn, N.; Birkholz, O.; Neumann, M.; Müller, M.; Binder, J. R.; Kamlah, M.
Morphology‐Dependent Influences on the Performance of Battery Cells with a Hierarchically Structured Positive Electrode**
2023. Batteries & Supercaps, 6 (12), Art.-Nr.: e202300264. doi:10.1002/batt.202300264
Morphology‐Dependent Influences on the Performance of Battery Cells with a Hierarchically Structured Positive Electrode**
2023. Batteries & Supercaps, 6 (12), Art.-Nr.: e202300264. doi:10.1002/batt.202300264
Forster-Tonigold, K.; Buchner, F.; Groß, A.; Behm, R. J.
Reactive Interactions between the Ionic Liquid BMP‐TFSI and a Na Surface
2023. Batteries and Supercaps, 6 (12), e202300336. doi:10.1002/batt.202300336
Reactive Interactions between the Ionic Liquid BMP‐TFSI and a Na Surface
2023. Batteries and Supercaps, 6 (12), e202300336. doi:10.1002/batt.202300336
Wang, Q.; Noettger, S.; Xie, Q.; Pastorio, C.; Seidel, A.; Müller, J. A.; Jung, C.; Jacob, T.; Sparrer, K. M. J.; Zech, F.; Kirchhoff, F.
Determinants of species-specific utilization of ACE2 by human and animal coronaviruses
2023. Communications Biology, 6 (1), 1051. doi:10.1038/s42003-023-05436-3
Determinants of species-specific utilization of ACE2 by human and animal coronaviruses
2023. Communications Biology, 6 (1), 1051. doi:10.1038/s42003-023-05436-3
Ma, L.; Schabel, S.; Fleischer, J.
Cutting of Battery and Fuel Cell Components Synergies from a Production Engineering Perspective; [Schneiden von Batterie- und Brennstoffzellenkomponenten - Synergien aus produktionstechnischer Sicht]
2023. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 118 (9), 561 – 566. doi:10.1515/zwf-2023-1126
Cutting of Battery and Fuel Cell Components Synergies from a Production Engineering Perspective; [Schneiden von Batterie- und Brennstoffzellenkomponenten - Synergien aus produktionstechnischer Sicht]
2023. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 118 (9), 561 – 566. doi:10.1515/zwf-2023-1126
Otte, S.; Mayer, D.; Fleischer, J.
Kontinuierliches Mischen in der Batteriezellproduktion Digitaler Zwilling zur Steuerungscodevalidierung [Digital Twin for control code validation in battery cell production]
2023. wt Werkstattstechnik online, 113 (07-08), 272 – 277. doi:10.37544/1436-4980-2023-07-08-6
Kontinuierliches Mischen in der Batteriezellproduktion Digitaler Zwilling zur Steuerungscodevalidierung [Digital Twin for control code validation in battery cell production]
2023. wt Werkstattstechnik online, 113 (07-08), 272 – 277. doi:10.37544/1436-4980-2023-07-08-6
Ata, S.; Zaheer, W.; Tabassum, A.; Ul Mohsin, I.; Altaf, I.; ur Rehman, A.; Al Huwayz, M.; Alwadai, N.; Nazir, A.; Iqbal, M.
Zn/Mn co‐doped NiO synthesized by sol‐gel route for the photocatalytic degradation of methylene blue dye
2023. ChemistrySelect, 8 (37), Art.-Nr.: e202301940. doi:10.1002/slct.202301940
Zn/Mn co‐doped NiO synthesized by sol‐gel route for the photocatalytic degradation of methylene blue dye
2023. ChemistrySelect, 8 (37), Art.-Nr.: e202301940. doi:10.1002/slct.202301940
Meyer, A.; Sterzl, Y.; Pfleging, W.
High repetition ultrafast laser ablation of graphite and silicon/graphite composite electrodes for lithium-ion batteries
2023. Journal of Laser Applications, 35 (4), Art.-Nr.: 042036. doi:10.2351/7.0001180
High repetition ultrafast laser ablation of graphite and silicon/graphite composite electrodes for lithium-ion batteries
2023. Journal of Laser Applications, 35 (4), Art.-Nr.: 042036. doi:10.2351/7.0001180
Köble, K.; Schilling, M.; Eifert, L.; Bevilacqua, N.; Fahy, K. F.; Atanassov, P.; Bazylak, A.; Zeis, R.
Revealing the Multifaceted Impacts of Electrode Modifications for Vanadium Redox Flow Battery Electrodes
2023. ACS Applied Materials & Interfaces, 15 (40), 46775–46789. doi:10.1021/acsami.3c07940
Revealing the Multifaceted Impacts of Electrode Modifications for Vanadium Redox Flow Battery Electrodes
2023. ACS Applied Materials & Interfaces, 15 (40), 46775–46789. doi:10.1021/acsami.3c07940
Wei, Z.; Singh, D. K.; Helmbrecht, K.; Sann, J.; Yusim, Y.; Kieser, J. A.; Glaser, C.; Rohnke, M.; Groß, A.; Janek, J.
In Situ Observation of Room‐Temperature Magnesium Metal Deposition on a NASICON/IL Hybrid Solid Electrolyte
2023. Advanced Energy Materials, 13 (44), Art.-Nr.: 2302525. doi:10.1002/aenm.202302525
In Situ Observation of Room‐Temperature Magnesium Metal Deposition on a NASICON/IL Hybrid Solid Electrolyte
2023. Advanced Energy Materials, 13 (44), Art.-Nr.: 2302525. doi:10.1002/aenm.202302525
Rist, U.; Falkowski, V.; Pfleging, W.
Electrochemical Properties of Laser-Printed Multilayer Anodes for Lithium-Ion Batteries
2023. Nanomaterials, 13 (17), Art.Nr.: 2411. doi:10.3390/nano13172411
Electrochemical Properties of Laser-Printed Multilayer Anodes for Lithium-Ion Batteries
2023. Nanomaterials, 13 (17), Art.Nr.: 2411. doi:10.3390/nano13172411
Ul Mohsin, I.; Riedel, S.; Xiu, Y.; Zhao-Karger, Z.; Ziebert, C.
New Insights into Self‐Discharge and Heat Generation in Magnesium Batteries
2023. Batteries & Supercaps, 6 (7), Art.-Nr.: e202300251. doi:10.1002/batt.202300251
New Insights into Self‐Discharge and Heat Generation in Magnesium Batteries
2023. Batteries & Supercaps, 6 (7), Art.-Nr.: e202300251. doi:10.1002/batt.202300251
Henschel, S.; Dörner, P.-T.; Kößler, F.; Fleischer, J.
Mechanische Zelldemontage für das direkte Recycling [Mechanical battery cell disassembly for direct end-of-life battery recycling]
2023. wt Werkstattstechnik online, 113 (07-08), 278–281. doi:10.37544/1436-4980-2023-07-08-12
Mechanische Zelldemontage für das direkte Recycling [Mechanical battery cell disassembly for direct end-of-life battery recycling]
2023. wt Werkstattstechnik online, 113 (07-08), 278–281. doi:10.37544/1436-4980-2023-07-08-12
Müller, C.; Wang, Z.; Hofmann, A.; Stueble, P.; Liu-Théato, X.; Klemens, J.; Smith, A.
Influences on Reliable Capacity Measurements of Hard Carbon in Highly Loaded Electrodes
2023. Batteries & Supercaps, 6 (11), Art.Nr.: e202300322. doi:10.1002/batt.202300322
Influences on Reliable Capacity Measurements of Hard Carbon in Highly Loaded Electrodes
2023. Batteries & Supercaps, 6 (11), Art.Nr.: e202300322. doi:10.1002/batt.202300322
Sabi, N.; Palanisamy, K.; Rahide, F.; Daboss, S.; Kranz, C.; Dsoke, S.
Surface Properties‐Performance Relationship of Aluminum Foil as Negative Electrode for Rechargeable Aluminum Batteries
2023. Batteries & Supercaps, 6 (11), Art.Nr.: e202300298. doi:10.1002/batt.202300298
Surface Properties‐Performance Relationship of Aluminum Foil as Negative Electrode for Rechargeable Aluminum Batteries
2023. Batteries & Supercaps, 6 (11), Art.Nr.: e202300298. doi:10.1002/batt.202300298
Madani, S. S.; Ziebert, C.; Marzband, M.
Thermal Behavior Modeling of Lithium-Ion Batteries: A Comprehensive Review
2023. Symmetry, 15 (8), Art.-Nr.: 1597. doi:10.3390/sym15081597
Thermal Behavior Modeling of Lithium-Ion Batteries: A Comprehensive Review
2023. Symmetry, 15 (8), Art.-Nr.: 1597. doi:10.3390/sym15081597
Elnagar, M. M.; Menezes, P. V.; Parada, W. A.; Mattausch, Y.; Kibler, L. A.; Mayrhofer, K. J. J.; Jacob, T.
Tailoring Cu Electrodes for Enhanced CO 2 Electroreduction through Plasma Electrolysis in Non‐Conventional Phosphorus‐Oxoanion‐Based Electrolytes
2023. ChemSusChem, 16 (23), e202300934. doi:10.1002/cssc.202300934
Tailoring Cu Electrodes for Enhanced CO 2 Electroreduction through Plasma Electrolysis in Non‐Conventional Phosphorus‐Oxoanion‐Based Electrolytes
2023. ChemSusChem, 16 (23), e202300934. doi:10.1002/cssc.202300934
Glaser, C.; Wei, Z.; Indris, S.; Klement, P.; Chatterjee, S.; Ehrenberg, H.; Zhao-Karger, Z.; Rohnke, M.; Janek, J.
To be or not to be – Is MgSc2Se4 a Mg-Ion Solid Electrolyte?
2023. Advanced Energy Materials, Art.-Nr.: 2301980. doi:10.1002/aenm.202301980
To be or not to be – Is MgSc2Se4 a Mg-Ion Solid Electrolyte?
2023. Advanced Energy Materials, Art.-Nr.: 2301980. doi:10.1002/aenm.202301980
Klemens, J.; Wurba, A.-K.; Burger, D.; Müller, M.; Bauer, W.; Büchele, S.; Leonet, O.; Blázquez, J. A.; Boyano, I.; Ayerbe, E.; Ehrenberg, H.; Fleischer, J.; Smith, A.; Scharfer, P.; Schabel, W.
Challenges and Opportunities for Large‐Scale Electrode Processing for Sodium‐Ion and Lithium‐Ion Battery
2023. Batteries & Supercaps, 6 (11), Art.Nr.: e202300291. doi:10.1002/batt.202300291
Challenges and Opportunities for Large‐Scale Electrode Processing for Sodium‐Ion and Lithium‐Ion Battery
2023. Batteries & Supercaps, 6 (11), Art.Nr.: e202300291. doi:10.1002/batt.202300291
Wang, Y.; Lu, C.; Chen, J.; Cui, C.; Pan, Y.; Pfleging, W.; Sun, J.
Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types
2023. International Journal of Agricultural and Biological Engineering, 16 (3), 7 – 14. doi:10.25165/j.ijabe.20231603.7876
Effects of self-healing biomimetic subsoiler on tillage resistance, wear-corrosion performance and soil disturbance morphology under different soil types
2023. International Journal of Agricultural and Biological Engineering, 16 (3), 7 – 14. doi:10.25165/j.ijabe.20231603.7876
Marinova, D.; Kalapsazova, M.; Zlatanova, Z.; Mereacre, L.; Zhecheva, E.; Stoyanova, R.
Lithium Manganese Sulfates as a New Class of Supercapattery Materials at Elevated Temperatures
2023. Materials, 16 (13), Art.Nr.: 4798. doi:10.3390/ma16134798
Lithium Manganese Sulfates as a New Class of Supercapattery Materials at Elevated Temperatures
2023. Materials, 16 (13), Art.Nr.: 4798. doi:10.3390/ma16134798
Neumann, M.; Wetterauer, S. E.; Osenberg, M.; Hilger, A.; Gräfensteiner, P.; Wagner, A.; Bohn, N.; Binder, J. R.; Manke, I.; Carraro, T.; Schmidt, V.
A data-driven modeling approach to quantify morphology effects on transport properties in nanostructured NMC particles
2023. International Journal of Solids and Structures, 280, Article no: 112394. doi:10.1016/j.ijsolstr.2023.112394
A data-driven modeling approach to quantify morphology effects on transport properties in nanostructured NMC particles
2023. International Journal of Solids and Structures, 280, Article no: 112394. doi:10.1016/j.ijsolstr.2023.112394
Ströbel, M.; Kiefer, L.; Pross-Brakhage, J.; Hemmerling, J.; Finster, P.; Ziebert, C.; Birke, K. P.
High Flashpoint and Eco-Friendly Electrolyte Solvent for Lithium-Ion Batteries
2023. Batteries, 9 (7), Art.-Nr.: 348. doi:10.3390/batteries9070348
High Flashpoint and Eco-Friendly Electrolyte Solvent for Lithium-Ion Batteries
2023. Batteries, 9 (7), Art.-Nr.: 348. doi:10.3390/batteries9070348
Elkhafif, O. W.; Hassan, H. K.; Ceblin, M. U.; Farkas, A.; Jacob, T.
Influence of Residual Water Traces on the Electrochemical Performance of Hydrophobic Ionic Liquids for Magnesium‐Containing Electrolytes
2023. ChemSusChem, 16 (19), Art.-Nr.: e202300421. doi:10.1002/cssc.202300421
Influence of Residual Water Traces on the Electrochemical Performance of Hydrophobic Ionic Liquids for Magnesium‐Containing Electrolytes
2023. ChemSusChem, 16 (19), Art.-Nr.: e202300421. doi:10.1002/cssc.202300421
Ata, S.; Tabassum, A.; Shaheed, I.; ul Mohsin, I.; Alwadai, N.; Al Huwayz, M.; Iqbal, M.; Nazir, A.
Adsorption Thermodynamics, Modeling, and Kinetics Studies for the Removal of Lead Ions Using ZnO Nanorods
2023. Adsorption Science and Technology, 2023, Art.Nr.: 7740674. doi:10.1155/2023/7740674
Adsorption Thermodynamics, Modeling, and Kinetics Studies for the Removal of Lead Ions Using ZnO Nanorods
2023. Adsorption Science and Technology, 2023, Art.Nr.: 7740674. doi:10.1155/2023/7740674
Mondal, I.; Menezes, P. V.; Laun, K.; Diemant, T.; Al-Shakran, M.; Zebger, I.; Jacob, T.; Driess, M.; Menezes, P. W.
In-Liquid Plasma-Mediated Manganese Oxide Electrocatalysts for Quasi-Industrial Water Oxidation and Selective Dehydrogenation
2023. ACS Nano, 17 (14), 14043–14052. doi:10.1021/acsnano.3c04296
In-Liquid Plasma-Mediated Manganese Oxide Electrocatalysts for Quasi-Industrial Water Oxidation and Selective Dehydrogenation
2023. ACS Nano, 17 (14), 14043–14052. doi:10.1021/acsnano.3c04296
Fitzek, H.; Sterrer, M.; Knez, D.; Schranger, H.; Sarapulova, A.; Dsoke, S.; Schroettner, H.; Kothleitner, G.; Gollas, B.; Abbas, Q.
Impact of Iodine Electrodeposition on Nanoporous Carbon Electrode Determined by EQCM, XPS and In Situ Raman Spectroscopy
2023. Nanomaterials, 13 (9), 1545. doi:10.3390/nano13091545
Impact of Iodine Electrodeposition on Nanoporous Carbon Electrode Determined by EQCM, XPS and In Situ Raman Spectroscopy
2023. Nanomaterials, 13 (9), 1545. doi:10.3390/nano13091545
Fu, Q.; Guo, B.; Hua, W.; Sarapulova, A.; Zhu, L.; Weidler, P. G. G.; Missyul, A.; Knapp, M.; Ehrenberg, H.; Dsoke, S.
Electrochemical Investigation of Calcium Substituted Monoclinic Li V (PO ) Negative Electrode Materials for Sodium‐ and Potassium‐Ion Batteries
2023. Small, 19 (44), Art.-Nr.: 2304102. doi:10.1002/smll.202304102
Electrochemical Investigation of Calcium Substituted Monoclinic Li
2023. Small, 19 (44), Art.-Nr.: 2304102. doi:10.1002/smll.202304102
Ohneseit, S.; Finster, P.; Floras, C.; Lubenau, N.; Uhlmann, N.; Seifert, H. J.; Ziebert, C.
Thermal and Mechanical Safety Assessment of Type 21700 Lithium-Ion Batteries with NMC, NCA and LFP Cathodes–Investigation of Cell Abuse by Means of Accelerating Rate Calorimetry (ARC)
2023. Batteries, 9 (5), Art.-Nr.: 237. doi:10.3390/batteries9050237
Thermal and Mechanical Safety Assessment of Type 21700 Lithium-Ion Batteries with NMC, NCA and LFP Cathodes–Investigation of Cell Abuse by Means of Accelerating Rate Calorimetry (ARC)
2023. Batteries, 9 (5), Art.-Nr.: 237. doi:10.3390/batteries9050237
Benkada, A.; Hartmann, F.; Poschmann, M.; Indris, S.; Lühmann, H.; Bensch, W.
Directed Dehydration of Na Sn S ⋅ 5H O Generates the New Compound Na Sn S : Crystal Structure and Selected Properties
2023. European Journal of Inorganic Chemistry, 26 (10), Art.-Nr.: e202200687. doi:10.1002/ejic.202200687
Directed Dehydration of Na
2023. European Journal of Inorganic Chemistry, 26 (10), Art.-Nr.: e202200687. doi:10.1002/ejic.202200687
Osenberg, M.; Hilger, A.; Neumann, M.; Wagner, A.; Bohn, N.; Binder, J. R.; Schmidt, V.; Banhart, J.; Manke, I.
Classification of FIB/SEM-tomography images for highly porous multiphase materials using random forest classifiers
2023. Journal of Power Sources, 570, Art.-Nr.: 233030. doi:10.1016/j.jpowsour.2023.233030
Classification of FIB/SEM-tomography images for highly porous multiphase materials using random forest classifiers
2023. Journal of Power Sources, 570, Art.-Nr.: 233030. doi:10.1016/j.jpowsour.2023.233030
Gordon, R.; Smith, A.
Towards more realistic Li-ion battery safety tests based on Li-plating as internal cell error
2023. Journal of Energy Storage, 72 (Part A), Art.-Nr.: 108200. doi:10.1016/j.est.2023.108200
Towards more realistic Li-ion battery safety tests based on Li-plating as internal cell error
2023. Journal of Energy Storage, 72 (Part A), Art.-Nr.: 108200. doi:10.1016/j.est.2023.108200
Zwahr, C.; Serey, N.; Nitschke, L.; Bischoff, C.; Rädel, U.; Meyer, A.; Zhu, P.; Pfleging, W.
Targeting new ways for large-scale, high-speed surface functionalization using direct laser interference patterning in a roll-to-roll process
2023. International Journal of Extreme Manufacturing, 5 (3), Art.-Nr.: 035006. doi:10.1088/2631-7990/acd916
Targeting new ways for large-scale, high-speed surface functionalization using direct laser interference patterning in a roll-to-roll process
2023. International Journal of Extreme Manufacturing, 5 (3), Art.-Nr.: 035006. doi:10.1088/2631-7990/acd916
Sotoudeh, M.; Dillenz, M.; Döhn, J.; Hansen, J.; Dsoke, S.; Groß, A.
Oxide Spinels with Superior Mg Conductivity
2023. Chemistry of Materials, 35 (12), 4786–4797. doi:10.1021/acs.chemmater.3c00634
Oxide Spinels with Superior Mg Conductivity
2023. Chemistry of Materials, 35 (12), 4786–4797. doi:10.1021/acs.chemmater.3c00634
Stottmeister, D.; Groß, A.
Toward the Formation of the Solid Electrolyte Interphase on Alkaline Metal Anodes: Ab Initio Simulations
2023. Batteries & Supercaps, 6 (8), Art.-Nr.: e202300156. doi:10.1002/batt.202300156
Toward the Formation of the Solid Electrolyte Interphase on Alkaline Metal Anodes: Ab Initio Simulations
2023. Batteries & Supercaps, 6 (8), Art.-Nr.: e202300156. doi:10.1002/batt.202300156
Gandert, J. C.; Müller, M.; Paarmann, S.; Queisser, O.; Wetzel, T.
Effective Thermal Conductivity of Lithium‐Ion Battery Electrodes in Dependence on the Degree of Calendering
2023. Energy Technology, 11 (8), Art.-Nr.: 2300259. doi:10.1002/ente.202300259
Effective Thermal Conductivity of Lithium‐Ion Battery Electrodes in Dependence on the Degree of Calendering
2023. Energy Technology, 11 (8), Art.-Nr.: 2300259. doi:10.1002/ente.202300259
Zhao, W.; Gebauer, J.; Bergfeldt, T.; Rohde, M.; Ziebert, C.; Du, Y.; Seifert, H. J.
Calorimetric Studies on Chemically Delithiated LiNi Mn Co O : Investigation of Phase Transition, Gas Evolution and Enthalpy of Formation
2023. Batteries, 9 (5), Art.-Nr.: 275. doi:10.3390/batteries9050275
Calorimetric Studies on Chemically Delithiated LiNi
2023. Batteries, 9 (5), Art.-Nr.: 275. doi:10.3390/batteries9050275
Klemens, J.; Schneider, L.; Burger, D.; Zimmerer, N.; Müller, M.; Bauer, W.; Ehrenberg, H.; Scharfer, P.; Schabel, W.
Process and Drying Behavior Toward Higher Drying Rates of Hard Carbon Anodes for Sodium‐Ion Batteries with Different Particle Sizes: An Experimental Study in Comparison to Graphite for Lithium‐Ion‐Batteries
2023. Energy Technology, 11 (8), Art.-Nr.: 2300338. doi:10.1002/ente.202300338
Process and Drying Behavior Toward Higher Drying Rates of Hard Carbon Anodes for Sodium‐Ion Batteries with Different Particle Sizes: An Experimental Study in Comparison to Graphite for Lithium‐Ion‐Batteries
2023. Energy Technology, 11 (8), Art.-Nr.: 2300338. doi:10.1002/ente.202300338
Klemens, J.; Burger, D.; Schneider, L.; Spiegel, S.; Müller, M.; Bohn, N.; Bauer, W.; Ehrenberg, H.; Scharfer, P.; Schabel, W.
Drying of Compact and Porous NCM Cathode Electrodes in Different Multilayer Architectures: Influence of Layer Configuration and Drying Rate on Electrode Properties
2023. Energy Technology, 11 (8), Art.Nr.: 2300267. doi:10.1002/ente.202300267
Drying of Compact and Porous NCM Cathode Electrodes in Different Multilayer Architectures: Influence of Layer Configuration and Drying Rate on Electrode Properties
2023. Energy Technology, 11 (8), Art.Nr.: 2300267. doi:10.1002/ente.202300267
Gyulai, A.; Bauer, W.; Ehrenberg, H.
Dry Electrode Manufacturing in a Calender: The Role of Powder Premixing for Electrode Quality and Electrochemical Performance
2023. ACS Applied Energy Materials, 6 (10), 5122–5134. doi:10.1021/acsaem.2c03755
Dry Electrode Manufacturing in a Calender: The Role of Powder Premixing for Electrode Quality and Electrochemical Performance
2023. ACS Applied Energy Materials, 6 (10), 5122–5134. doi:10.1021/acsaem.2c03755
Kirchhoff, B.; Jónsson, E. Ö.; Jacob, T.; Jónsson, H.
On the Challenge of Obtaining an Accurate Solvation Energy Estimate in Simulations of Electrocatalysis
2023. Topics in Catalysis, 66, 1244–1259. doi:10.1007/s11244-023-01829-0
On the Challenge of Obtaining an Accurate Solvation Energy Estimate in Simulations of Electrocatalysis
2023. Topics in Catalysis, 66, 1244–1259. doi:10.1007/s11244-023-01829-0
Braig, M.; Zeis, R.
Distribution of relaxation times analysis of electrochemical hydrogen pump impedance spectra
2023. Journal of Power Sources, 576, Art.-Nr.: 233203. doi:10.1016/j.jpowsour.2023.233203
Distribution of relaxation times analysis of electrochemical hydrogen pump impedance spectra
2023. Journal of Power Sources, 576, Art.-Nr.: 233203. doi:10.1016/j.jpowsour.2023.233203
Kirchhoff, B.; Jung, C.; Gaissmaier, D.; Braunwarth, L.; Fantauzzi, D.; Jacob, T.
In silico characterization of nanoparticles
2023. Physical Chemistry Chemical Physics, 25 (19), 13228–13243. doi:10.1039/D3CP01073B
In silico characterization of nanoparticles
2023. Physical Chemistry Chemical Physics, 25 (19), 13228–13243. doi:10.1039/D3CP01073B
Braig, M.; Deissler, N. H.; Lüdeking, I.; Regnet, F.; Bevilacqua, N.; Zeis, R.
FIB‐SEM and ToF‐SIMS Analysis of High‐Temperature PEM Fuel Cell Electrodes
2023. Advanced Materials Interfaces, 10 (13), Art.-Nr.: 2202430. doi:10.1002/admi.202202430
FIB‐SEM and ToF‐SIMS Analysis of High‐Temperature PEM Fuel Cell Electrodes
2023. Advanced Materials Interfaces, 10 (13), Art.-Nr.: 2202430. doi:10.1002/admi.202202430
Zhu, P.; Trouillet, V.; Heißler, S.; Pfleging, W.
Laser structuring of high mass loaded and aqueous acid processed Li(Ni₀.₆Mn₀.₂Co₀.₂)O₂ cathodes for lithium-ion batteries
2023. Journal of Energy Storage, 66, 107401. doi:10.1016/j.est.2023.107401
Laser structuring of high mass loaded and aqueous acid processed Li(Ni₀.₆Mn₀.₂Co₀.₂)O₂ cathodes for lithium-ion batteries
2023. Journal of Energy Storage, 66, 107401. doi:10.1016/j.est.2023.107401
Khudyshkina, A. D.; Butzelaar, A. J.; Guo, Y.; Hoffmann, M.; Bergfeldt, T.; Schaller, M.; Indris, S.; Wilhelm, M.; Théato, P.; Jeschull, F.
From lithium to potassium: Comparison of cations in poly(ethylene oxide)-based block copolymer electrolytes for solid-state alkali metal batteries
2023. Electrochimica Acta, 454, Article no: 142421. doi:10.1016/j.electacta.2023.142421
From lithium to potassium: Comparison of cations in poly(ethylene oxide)-based block copolymer electrolytes for solid-state alkali metal batteries
2023. Electrochimica Acta, 454, Article no: 142421. doi:10.1016/j.electacta.2023.142421
Mohsin, I. U.; Riedel, S.; Xiu, Y.; Zhao-Karger, Z.; Ziebert, C.
New insights into Self‐discharge and Heat Generation in Magnesium Batteries
2023. Batteries & Supercaps, 6 (7), Art.Nr.: e202300137. doi:10.1002/batt.202300137
New insights into Self‐discharge and Heat Generation in Magnesium Batteries
2023. Batteries & Supercaps, 6 (7), Art.Nr.: e202300137. doi:10.1002/batt.202300137
Köble, K.; Jaugstetter, M.; Schilling, M.; Braig, M.; Diemant, T.; Tschulik, K.; Zeis, R.
Multimodal characterization of carbon electrodes’ thermal activation for vanadium redox flow batteries
2023. Journal of Power Sources, 569, Art.-Nr.: 233010. doi:10.1016/j.jpowsour.2023.233010
Multimodal characterization of carbon electrodes’ thermal activation for vanadium redox flow batteries
2023. Journal of Power Sources, 569, Art.-Nr.: 233010. doi:10.1016/j.jpowsour.2023.233010
Rahide, F.; Zemlyanushin, E.; Bosch, G.-M.; Dsoke, S.
Open Challenges on Aluminum Triflate-Based Electrolytes for Aluminum Batteries
2023. Journal of The Electrochemical Society, 170 (3), Article no: 030546. doi:10.1149/1945-7111/acc762
Open Challenges on Aluminum Triflate-Based Electrolytes for Aluminum Batteries
2023. Journal of The Electrochemical Society, 170 (3), Article no: 030546. doi:10.1149/1945-7111/acc762
Smith, A.; Stueble, P.; Leuthner, L.; Hofmann, A.; Jeschull, F.; Mereacre, L.
Potential and Limitations of Research Battery Cell Types for Electrochemical Data Acquisition
2023. Batteries & Supercaps, 6 (6), e202300080. doi:10.1002/batt.202300080
Potential and Limitations of Research Battery Cell Types for Electrochemical Data Acquisition
2023. Batteries & Supercaps, 6 (6), e202300080. doi:10.1002/batt.202300080
Hölderle, T.; Monchak, M.; Baran, V.; Dolotko, O.; Bette, S.; Mikhailova, D.; Voss, A.; Avdeev, M.; Ehrenberg, H.; Müller-Buschbaum, P.; Senyshyn, A.
The structural behavior of electrochemically delithiated Li Ni Co Al O (x<1) battery cathodes
2023. Journal of Power Sources, 564, Art.-Nr.: 232799. doi:10.1016/j.jpowsour.2023.232799
The structural behavior of electrochemically delithiated Li
2023. Journal of Power Sources, 564, Art.-Nr.: 232799. doi:10.1016/j.jpowsour.2023.232799
Surace, Y.; Jeschull, F.; Novák, P.; Trabesinger, S.
Performance-Determining Factors for Si–Graphite Electrode Evaluation: The Role of Mass Loading and Amount of Electrolyte Additive
2023. Journal of The Electrochemical Society, 170 (2), Art.-Nr.: 020510. doi:10.1149/1945-7111/acb854
Performance-Determining Factors for Si–Graphite Electrode Evaluation: The Role of Mass Loading and Amount of Electrolyte Additive
2023. Journal of The Electrochemical Society, 170 (2), Art.-Nr.: 020510. doi:10.1149/1945-7111/acb854
Im, C.; Kirchhoff, B.; Krivtsov, I.; Mitoraj, D.; Beranek, R.; Jacob, T.
Structure and Optical Properties of Polymeric Carbon Nitrides from Atomistic Simulations
2023. Chemistry of Materials, 35 (4), 1547–1559. doi:10.1021/acs.chemmater.2c02843
Structure and Optical Properties of Polymeric Carbon Nitrides from Atomistic Simulations
2023. Chemistry of Materials, 35 (4), 1547–1559. doi:10.1021/acs.chemmater.2c02843
Fu, Q.; Schwarz, B.; Ding, Z.; Sarapulova, A.; Weidler, P. G.; Missyul, A.; Etter, M.; Welter, E.; Hua, W.; Knapp, M.; Dsoke, S.; Ehrenberg, H.
Guest Ion-Dependent Reaction Mechanisms of New Pseudocapacitive Mg V (PO ) /Carbon Composite as Negative Electrode for Monovalent-Ion Batteries
2023. Advanced Science, 10 (11), Art.-Nr.: 2207283. doi:10.1002/advs.202207283
Guest Ion-Dependent Reaction Mechanisms of New Pseudocapacitive Mg
2023. Advanced Science, 10 (11), Art.-Nr.: 2207283. doi:10.1002/advs.202207283
Ata, S.; Shaheen, I.; Aslam, H.; Mohsin, I. U.; Alwadai, N.; Huwayz, M. A.; Iqbal, M.; Younas, U.
Barium and strontium doped La-based perovskite synthesis via sol-gel route and photocatalytic activity evaluation for methylene blue
2023. Results in Physics, 45, Art.-Nr.: 106235. doi:10.1016/j.rinp.2023.106235
Barium and strontium doped La-based perovskite synthesis via sol-gel route and photocatalytic activity evaluation for methylene blue
2023. Results in Physics, 45, Art.-Nr.: 106235. doi:10.1016/j.rinp.2023.106235
Mohsin, I. U.; Schneider, L.; Yu, Z.; Cai, W.; Ziebert, C.
Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries
2023. (A. Arunachalam, Ed.) International Journal of Electrochemistry, 2023, Artlk. ID.: 6054452. doi:10.1155/2023/6054452
Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries
2023. (A. Arunachalam, Ed.) International Journal of Electrochemistry, 2023, Artlk. ID.: 6054452. doi:10.1155/2023/6054452
Fiesinger, F.; Gaissmaier, D.; van den Borg, M.; Beßner, J.; van Duin, A. C. T.; Jacob, T.
Development of a Mg/O ReaxFF Potential to describe the Passivation Processes in Magnesium‐Ion Batteries
2023. ChemSusChem, 16 (3), Art.-Nr.: e202201821. doi:10.1002/cssc.202201821
Development of a Mg/O ReaxFF Potential to describe the Passivation Processes in Magnesium‐Ion Batteries
2023. ChemSusChem, 16 (3), Art.-Nr.: e202201821. doi:10.1002/cssc.202201821
Bord, J.; Kirchhoff, B.; Baldofski, M.; Jung, C.; Jacob, T.
An Atomistic View of Platinum Cluster Growth on Pristine and Defective Graphene Supports
2023. Small, 19 (10). doi:10.1002/smll.202207484
An Atomistic View of Platinum Cluster Growth on Pristine and Defective Graphene Supports
2023. Small, 19 (10). doi:10.1002/smll.202207484
Ata, S.; Bano, S.; Bibi, I.; Alwadai, N.; Mohsin, I. ul; Al Huwayz, M.; Iqbal, M.; Nazir, A.
Cationic distributions and dielectric properties of magnesium ferrites fabricated by sol-gel route and photocatalytic activity evaluation
2023. Zeitschrift für Physikalische Chemie, 237 (1-2), 67–86. doi:10.1515/zpch-2022-0086
Cationic distributions and dielectric properties of magnesium ferrites fabricated by sol-gel route and photocatalytic activity evaluation
2023. Zeitschrift für Physikalische Chemie, 237 (1-2), 67–86. doi:10.1515/zpch-2022-0086
Kollenda, A.; Husseini, K.; Henschel, S.; Schmidgruber, N.; Becker-Koch, D.; Braunwarth, W.; Fleischer, J.; Daub, R.
Quality assurance for flexible stack assembly of lithium‐ion cells
2023. Energy Technology, 11 (5), Art.-Nr.: 2201059. doi:10.1002/ente.202201059
Quality assurance for flexible stack assembly of lithium‐ion cells
2023. Energy Technology, 11 (5), Art.-Nr.: 2201059. doi:10.1002/ente.202201059
Braunwarth, L.; Jung, C.; Jacob, T.
Potential‐Dependent Pt(111)/Water Interface: Tackling the Challenge of a Consistent Treatment of Electrochemical Interfaces**
2023. ChemPhysChem, 24 (1), Art.-Nr.: e202200336. doi:10.1002/cphc.202200336
Potential‐Dependent Pt(111)/Water Interface: Tackling the Challenge of a Consistent Treatment of Electrochemical Interfaces**
2023. ChemPhysChem, 24 (1), Art.-Nr.: e202200336. doi:10.1002/cphc.202200336
Madani, S. S.; Ziebert, C.
Calorimetric Methods and Thermal Management of Lithium-ion batteries: A mini-review
2023. Journal of physics / Conference series, 2454, Art.-Nr.: 012006. doi:10.1088/1742-6596/2454/1/012006
Calorimetric Methods and Thermal Management of Lithium-ion batteries: A mini-review
2023. Journal of physics / Conference series, 2454, Art.-Nr.: 012006. doi:10.1088/1742-6596/2454/1/012006
Uhl, M.; Geng, T.; Schuster, P. A.; Schick, B. W.; Kruck, M.; Fuoss, A.; Kuehne, A. J. C.; Jacob, T.
Combining Deep Eutectic Solvents with TEMPO‐based Polymer Electrodes: Influence of Molar Ratio on Electrode Performance
2023. Angewandte Chemie - International Edition, 62 (2), Art.-Nr.: e202214927. doi:10.1002/anie.202214927
Combining Deep Eutectic Solvents with TEMPO‐based Polymer Electrodes: Influence of Molar Ratio on Electrode Performance
2023. Angewandte Chemie - International Edition, 62 (2), Art.-Nr.: e202214927. doi:10.1002/anie.202214927
Benkada, A.; Hartmann, F.; A. Engesser, T.; Indris, S.; Zinkevich, T.; Näther, C.; Lühmann, H.; Reinsch, H.; Adams, S.; Bensch, W.
Room‐Temperature Solid‐State Transformation of Na SnS ⋅ 14H O into Na Sn S ⋅ 5H O: An Unusual Epitaxial Reaction Including Bond Formation, Mass Transport, and Ionic Conductivity
2023. Chemistry – A European Journal, 29 (1), e202202318. doi:10.1002/chem.202202318
Room‐Temperature Solid‐State Transformation of Na
2023. Chemistry – A European Journal, 29 (1), e202202318. doi:10.1002/chem.202202318
Conference Papers
Niakan, M. R.; Hajihosseini, M.; Madani, S. S.; Ziebert, C.
Enhancing Battery Voltage Prediction with Deep Learning: A Comparative Analysis of LSTM and Traditional Models
2023. 2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 15-17 December 2023, 491–495, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/AUTEEE60196.2023.10408405
Enhancing Battery Voltage Prediction with Deep Learning: A Comparative Analysis of LSTM and Traditional Models
2023. 2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 15-17 December 2023, 491–495, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/AUTEEE60196.2023.10408405
Sterzl, Y.; Pfleging, W.
Extending the 3D-battery concept: large areal ultrashort pulsed laser structuring of multilayered electrode coatings
2023. Laser-based Micro- and Nanoprocessing XVII, Art.-Nr.: 124090O, SPIE. doi:10.1117/12.2650288
Extending the 3D-battery concept: large areal ultrashort pulsed laser structuring of multilayered electrode coatings
2023. Laser-based Micro- and Nanoprocessing XVII, Art.-Nr.: 124090O, SPIE. doi:10.1117/12.2650288
Rist, U.; Ball, F.; Pfleging, W.
3D printing of anode architectures for customized lithium-ion batteries
2023. Laser-based Micro- and Nanoprocessing XVII, San Francisco, CA, January 31 - February 2, 2023. Ed.: R. Kling, Article no: 124090N, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2650281
3D printing of anode architectures for customized lithium-ion batteries
2023. Laser-based Micro- and Nanoprocessing XVII, San Francisco, CA, January 31 - February 2, 2023. Ed.: R. Kling, Article no: 124090N, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2650281
Zhu, P.; Smyrek, P.; Ebert, B.; Pfleging, W.
Laser patterning and electrochemical characterization of thick-film cathodes for lithium-ion batteries
2023. Laser-based Micro- and Nanoprocessing XVII, San Francisco, CA, January 31 - February 2, 2023. Ed.: R. Kling, Article no: 124090K, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2648881
Laser patterning and electrochemical characterization of thick-film cathodes for lithium-ion batteries
2023. Laser-based Micro- and Nanoprocessing XVII, San Francisco, CA, January 31 - February 2, 2023. Ed.: R. Kling, Article no: 124090K, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2648881
Pfleging, W.; Meyer, A. P.; Rist, U.; Smyrek, P.; Sterzl, Y.; Zheng, Y.; Zhu, P.
Laser structuring and functionalization of nanoscaled battery materials
2023. Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2023, San Francisco, CA, January 28-29, 2023. Ed.: A.V. Kabashin, Article no: 1241002, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2654944
Laser structuring and functionalization of nanoscaled battery materials
2023. Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2023, San Francisco, CA, January 28-29, 2023. Ed.: A.V. Kabashin, Article no: 1241002, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2654944
Meyer, A. P.; Sterzl, Y.; Rädel, U.; Xiao, S.; Zenz, M.; Schwab, D.; Pfleging, W.
Laser structuring of electrodes in roll-to-roll environment using multi-beam processing: process upscaling and its perspective
2023. Laser-based Micro- and Nanoprocessing XVII 2023. Ed.: R. Kling, Article no: 124090J, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2651089
Laser structuring of electrodes in roll-to-roll environment using multi-beam processing: process upscaling and its perspective
2023. Laser-based Micro- and Nanoprocessing XVII 2023. Ed.: R. Kling, Article no: 124090J, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2651089
Madani, S. S.; Ziebert, C.
A model-based approach for temperature estimation of a lithium-ion battery pack
2023. Proceedings of 2022 Asian Power and Electrical Technology Conference, Shanghai, China, 11th November - 13th November 2022, 357–360, IEEEXplore. doi:10.1109/APET56294.2022.10072755
A model-based approach for temperature estimation of a lithium-ion battery pack
2023. Proceedings of 2022 Asian Power and Electrical Technology Conference, Shanghai, China, 11th November - 13th November 2022, 357–360, IEEEXplore. doi:10.1109/APET56294.2022.10072755
Madani, S. S.; Ziebert, C.; Andalibi, M.; Hajihosseini, M.; Naseri, F.
A Model-Based Approach for Voltage and State-of- Charge Estimation of Lithium-ion Batteries
2023. Proceedings 2022 IEEE Sustainable Power and Energy Conference (iSPEC), Ehsan Pashajavid, Dowon Kim, Sumedha Rajakaruna, Ahmed Abu-Siada, 1–5, IEEEXplore. doi:10.1109/iSPEC54162.2022.10032998
A Model-Based Approach for Voltage and State-of- Charge Estimation of Lithium-ion Batteries
2023. Proceedings 2022 IEEE Sustainable Power and Energy Conference (iSPEC), Ehsan Pashajavid, Dowon Kim, Sumedha Rajakaruna, Ahmed Abu-Siada, 1–5, IEEEXplore. doi:10.1109/iSPEC54162.2022.10032998
2022
Journal Articles
Herrmann, L.; Ehrenberg, H.; Graczyk-Zajac, M.; Kaymakci, E.; Kölbel, T.; Kölbel, L.; Tübke, J.
Lithium recovery from geothermal brine – an investigation into the desorption of lithium ions using manganese oxide adsorbents
2022. Energy Advances, 1 (11), 877–885. doi:10.1039/D2YA00099G
Lithium recovery from geothermal brine – an investigation into the desorption of lithium ions using manganese oxide adsorbents
2022. Energy Advances, 1 (11), 877–885. doi:10.1039/D2YA00099G
Shen, H.; Chen, K.; Kou, J.; Jia, Z.; Tamura, N.; Hua, W.; Tang, W.; Ehrenberg, H.; Doeff, M.
Spatiotemporal mapping of microscopic strains and defects to reveal Li-dendrite-induced failure in all-solid-state batteries
2022. Materials Today, 57, 180–191. doi:10.1016/j.mattod.2022.06.005
Spatiotemporal mapping of microscopic strains and defects to reveal Li-dendrite-induced failure in all-solid-state batteries
2022. Materials Today, 57, 180–191. doi:10.1016/j.mattod.2022.06.005
Forster-Tonigold, K.; Buchner, F.; Bansmann, J.; Behm, R. J.; Groß, A.
A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium
2022. Batteries & Supercaps, 5 (12), Art.-Nr. e202200483. doi:10.1002/batt.202200483
A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium
2022. Batteries & Supercaps, 5 (12), Art.-Nr. e202200483. doi:10.1002/batt.202200483
Mayer, D.; Schwab, B.; Fleischer, J.
Influence of electrode corrugation after calendering on the geometry of single electrode sheets in battery cell production
2022. Energy Technology, 11 (5), Art.-Nr.: 2200870. doi:10.1002/ente.202200870
Influence of electrode corrugation after calendering on the geometry of single electrode sheets in battery cell production
2022. Energy Technology, 11 (5), Art.-Nr.: 2200870. doi:10.1002/ente.202200870
Traskunov, I.; Latz, A.
Novel local fluctuation-preserving upscaling techniques for heterogeneous reaction-transport equation in porous media
2022. Electrochimica Acta, 434, Art.-Nr.: 141248. doi:10.1016/j.electacta.2022.141248
Novel local fluctuation-preserving upscaling techniques for heterogeneous reaction-transport equation in porous media
2022. Electrochimica Acta, 434, Art.-Nr.: 141248. doi:10.1016/j.electacta.2022.141248
Huang, J.; Climent, V.; Groß, A.; Feliu, J. M.
Understanding surface charge effects in electrocatalysis. Part 2: Hydrogen peroxide reactions at platinum
2022. Chinese Journal of Catalysis, 43 (11), 2837–2849. doi:10.1016/S1872-2067(22)64138-X
Understanding surface charge effects in electrocatalysis. Part 2: Hydrogen peroxide reactions at platinum
2022. Chinese Journal of Catalysis, 43 (11), 2837–2849. doi:10.1016/S1872-2067(22)64138-X
Lautenschlaeger, M. P.; Weinmiller, J.; Kellers, B.; Danner, T.; Latz, A.
Homogenized lattice Boltzmann model for simulating multi-phase flows in heterogeneous porous media
2022. Advances in Water Resources, 170, Art.-Nr.: 104320. doi:10.1016/j.advwatres.2022.104320
Homogenized lattice Boltzmann model for simulating multi-phase flows in heterogeneous porous media
2022. Advances in Water Resources, 170, Art.-Nr.: 104320. doi:10.1016/j.advwatres.2022.104320
Madani, S. S.; Schaltz, E.; Kær, S. K.; Ziebert, C.
A comprehensive heat generation study of lithium titanate oxide-based lithium-ion batteries
2022. Journal of Physics: Conference Series, 2382 (1), Art.-Nr.: 012004. doi:10.1088/1742-6596/2382/1/012004
A comprehensive heat generation study of lithium titanate oxide-based lithium-ion batteries
2022. Journal of Physics: Conference Series, 2382 (1), Art.-Nr.: 012004. doi:10.1088/1742-6596/2382/1/012004
Mereacre, V.; Stüble, P.; Trouillet, V.; Ahmed, S.; Volz, K.; Binder, J. R.
Coating versus Doping: Understanding the Enhanced Performance of High‐Voltage Batteries by the Coating of Spinel LiNi Mn O with Li La TiO
2022. Advanced Materials Interfaces, 10 (2), Art.-Nr.: 2201324. doi:10.1002/admi.202201324
Coating versus Doping: Understanding the Enhanced Performance of High‐Voltage Batteries by the Coating of Spinel LiNi
2022. Advanced Materials Interfaces, 10 (2), Art.-Nr.: 2201324. doi:10.1002/admi.202201324
Kang, S.; Im, C.; Spanos, I.; Ham, K.; Lim, A.; Jacob, T.; Schlögl, R.; Lee, J.
Durable Nickel‐Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts through Surface Functionalization with Tetraphenylporphyrin
2022. Angewandte Chemie - International Edition, 61 (51), Art.-Nr.: e202214541. doi:10.1002/anie.202214541
Durable Nickel‐Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts through Surface Functionalization with Tetraphenylporphyrin
2022. Angewandte Chemie - International Edition, 61 (51), Art.-Nr.: e202214541. doi:10.1002/anie.202214541
Kößler, F.; Mayer, D.; Fleischer, J.
Agile Produktionssysteme in der Batteriezellfertigung
2022. wt Werkstattstechnik online, 112 (44780), 492–495. doi:10.37544/1436-4980-2022-07-08-46
Agile Produktionssysteme in der Batteriezellfertigung
2022. wt Werkstattstechnik online, 112 (44780), 492–495. doi:10.37544/1436-4980-2022-07-08-46
Bock, E.; Pfleging, W.; Tada, D.; Macedo, E.; Premazzi, N.; Sá, R.; Solheid, J.; Besser, H.; Andrade, A.
Laser-Treated Surfaces for VADs: From Inert Titanium to Potential Biofunctional Materials
2022. BME frontiers, 2022, Art.-Nr.: 9782562. doi:10.34133/2022/9782562
Laser-Treated Surfaces for VADs: From Inert Titanium to Potential Biofunctional Materials
2022. BME frontiers, 2022, Art.-Nr.: 9782562. doi:10.34133/2022/9782562
Tran, M. X.; Smyrek, P.; Park, J.; Pfleging, W.; Lee, J. K.
Ultrafast-Laser Micro-Structuring of LiNi Mn Co O Cathode for High-Rate Capability of Three-Dimensional Li-ion Batteries
2022. Nanomaterials, 12 (21), Art.-Nr.: 3897. doi:10.3390/nano12213897
Ultrafast-Laser Micro-Structuring of LiNi
2022. Nanomaterials, 12 (21), Art.-Nr.: 3897. doi:10.3390/nano12213897
Ventura Silva, G.; Thomitzek, M.; Lippke, M.; Heckmann, T.; Karaki, H.; Lischka, C.; Möhlen, F.; Mayer, D.; Hagemeister, J.; Daub, R.; Fleischer, J.; Nirschl, H.; Schröder, D.; Scharfer, P.; Schabel, W.; Kwade, A.; Herrmann, C.
Digitalization Platform for Sustainable Battery Cell Production: Coupling of Process, Production, and Product Models
2022. Energy Technology, 11 (5), Art.-Nr.: 2200801. doi:10.1002/ente.202200801
Digitalization Platform for Sustainable Battery Cell Production: Coupling of Process, Production, and Product Models
2022. Energy Technology, 11 (5), Art.-Nr.: 2200801. doi:10.1002/ente.202200801
Forster-Tonigold, K.; Buchner, F.; Bansmann, J.; Behm, R. J.; Groß, A.
A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium
2022. Batteries & Supercaps, 5 (12), Art._Nr: e202200484. doi:10.1002/batt.202200484
A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium
2022. Batteries & Supercaps, 5 (12), Art._Nr: e202200484. doi:10.1002/batt.202200484
Li, X.; Wang, Y.; Xi, K.; Yu, W.; Feng, J.; Gao, G.; Wu, H.; Jiang, Q.; Abdelkader, A.; Hua, W.; Zhong, G.; Ding, S.
Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries
2022. Nano-Micro Letters, 14, Art.-Nr.: 210. doi:10.1007/s40820-022-00952-z
Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries
2022. Nano-Micro Letters, 14, Art.-Nr.: 210. doi:10.1007/s40820-022-00952-z
Schmidgruber, N.; Mayer, D.; Fleischer, J.
Hochproduktive, hydraulische Batteriezellfertigung : Konzept zur hochproduktiven Fertigung von Lithium-Ionen-Batterien durch hydraulische Pressen [Highly productive, hydraulic batterycell manufacturing - Plan for the highly productive manufacturing of lithiumion batteries using a hydraulic press]
2022. wt Werkstattstechnik online, 112 (09), 586–590. doi:10.37544/1436-4980-2022-09-58
Hochproduktive, hydraulische Batteriezellfertigung : Konzept zur hochproduktiven Fertigung von Lithium-Ionen-Batterien durch hydraulische Pressen [Highly productive, hydraulic batterycell manufacturing - Plan for the highly productive manufacturing of lithiumion batteries using a hydraulic press]
2022. wt Werkstattstechnik online, 112 (09), 586–590. doi:10.37544/1436-4980-2022-09-58
Murugesan, C.; Senthilkumar, B.; Barpanda, P.
Biowaste-Derived Highly Porous N-Doped Carbon as a Low-Cost Bifunctional Electrocatalyst for Hybrid Sodium–Air Batteries
2022. ACS Sustainable Chemistry & Engineering, 10 (28), 9077–9086. doi:10.1021/acssuschemeng.2c01300
Biowaste-Derived Highly Porous N-Doped Carbon as a Low-Cost Bifunctional Electrocatalyst for Hybrid Sodium–Air Batteries
2022. ACS Sustainable Chemistry & Engineering, 10 (28), 9077–9086. doi:10.1021/acssuschemeng.2c01300
Schneider, L.; Klemens, J.; Herbst, E. C.; Müller, M.; Scharfer, P.; Schabel, W.; Bauer, W.; Ehrenberg, H.
Transport Properties in Electrodes for Lithium-Ion Batteries: Comparison of Compact versus Porous NCM Particles
2022. Journal of The Electrochemical Society, 169 (10), Art.-Nr.: 100553. doi:10.1149/1945-7111/ac9c37
Transport Properties in Electrodes for Lithium-Ion Batteries: Comparison of Compact versus Porous NCM Particles
2022. Journal of The Electrochemical Society, 169 (10), Art.-Nr.: 100553. doi:10.1149/1945-7111/ac9c37
Feinauer, M.; Uhlmann, N.; Ziebert, C.; Blank, T.
Simulation, Set-Up, and Thermal Characterization of a Water-Cooled Li-Ion Battery System
2022. Batteries, 8 (10), Art.-Nr.: 177. doi:10.3390/batteries8100177
Simulation, Set-Up, and Thermal Characterization of a Water-Cooled Li-Ion Battery System
2022. Batteries, 8 (10), Art.-Nr.: 177. doi:10.3390/batteries8100177
Husseini, K.; Schmidgruber, N.; Henschel, S.; Mayer, D.; Fleischer, J.
Model‐Based Optimization of Web Tension Control for the Flexible Cell Stack Assembly of Lithium‐Ion Battery Cells
2022. Energy Technology, 11 (5), Art.-Nr.: 2200679. doi:10.1002/ente.202200679
Model‐Based Optimization of Web Tension Control for the Flexible Cell Stack Assembly of Lithium‐Ion Battery Cells
2022. Energy Technology, 11 (5), Art.-Nr.: 2200679. doi:10.1002/ente.202200679
Forster-Tonigold, K.; Buchner, F.; Bansmann, J.; Behm, R. J.; Groß, A.
A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium
2022. Batteries and Supercaps, 5 (12), Art.Nr. e202200307. doi:10.1002/batt.202200307
A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium
2022. Batteries and Supercaps, 5 (12), Art.Nr. e202200307. doi:10.1002/batt.202200307
Gauckler, C.; Dillenz, M.; Maroni, F.; Pfeiffer, L. F.; Biskupek, J.; Sotoudeh, M.; Fu, Q.; Kaiser, U.; Dsoke, S.; Euchner, H.; Axmann, P.; Wohlfahrt-Mehrens, M.; Groß, A.; Marinaro, M.
Detailed Structural and Electrochemical Comparison between High Potential Layered P2-NaMnNi and Doped P2-NaMnNiMg Oxides
2022. ACS Applied Energy Materials, 5 (11), 13735–13750. doi:10.1021/acsaem.2c02402
Detailed Structural and Electrochemical Comparison between High Potential Layered P2-NaMnNi and Doped P2-NaMnNiMg Oxides
2022. ACS Applied Energy Materials, 5 (11), 13735–13750. doi:10.1021/acsaem.2c02402
Schabel, S.; Fleischer, J.
Scherschneiden von Elektroden für Li-Ionen-Zellen : Untersuchung der anlagenseitigen Prozessparameter und Bewertung der Schnittkantenqualität [Investigation of the plant-side process parameters and evaluation of the cutting edge quality – Shear-cutting of Electrodes for Li-Ion-Cells]
2022. WT Werkstattstechnik, 112 (7-8), 487–491. doi:10.37544/1436-4980-2022-07-08-41
Scherschneiden von Elektroden für Li-Ionen-Zellen : Untersuchung der anlagenseitigen Prozessparameter und Bewertung der Schnittkantenqualität [Investigation of the plant-side process parameters and evaluation of the cutting edge quality – Shear-cutting of Electrodes for Li-Ion-Cells]
2022. WT Werkstattstechnik, 112 (7-8), 487–491. doi:10.37544/1436-4980-2022-07-08-41
Gu, D.; Yuan, Y.; Liu, J.; Li, D.; Zhang, W.; Wu, L.; Cao, F.; Wang, J.; Huang, G.; Pan, F.
The electrochemical properties of bismuth-antimony-tin alloy anodes for magnesium ion batteries
2022. Journal of Power Sources, 548, Art.Nr. 232076. doi:10.1016/j.jpowsour.2022.232076
The electrochemical properties of bismuth-antimony-tin alloy anodes for magnesium ion batteries
2022. Journal of Power Sources, 548, Art.Nr. 232076. doi:10.1016/j.jpowsour.2022.232076
Aziam, H.; Larhrib, B.; Hakim, C.; Sabi, N.; Ben Youcef, H.; Saadoune, I.
Solid-state electrolytes for beyond lithium-ion batteries: A review
2022. Renewable and Sustainable Energy Reviews, 167, Art.-Nr.: 112694. doi:10.1016/j.rser.2022.112694
Solid-state electrolytes for beyond lithium-ion batteries: A review
2022. Renewable and Sustainable Energy Reviews, 167, Art.-Nr.: 112694. doi:10.1016/j.rser.2022.112694
von Kolzenberg, L.; Stadler, J.; Fath, J.; Ecker, M.; Horstmann, B.; Latz, A.
A four parameter model for the solid-electrolyte interphase to predict battery aging during operation
2022. Journal of Power Sources, 539, Art.-Nr.: 231560. doi:10.1016/j.jpowsour.2022.231560
A four parameter model for the solid-electrolyte interphase to predict battery aging during operation
2022. Journal of Power Sources, 539, Art.-Nr.: 231560. doi:10.1016/j.jpowsour.2022.231560
Hartmann, F.; Benkada, A.; Indris, S.; Poschmann, M.; Lühmann, H.; Duchstein, P.; Zahn, D.; Bensch, W.
Directed Dehydration as Synthetic Tool for Generation of a New Na SnS Polymorph: Crystal Structure, Na Conductivity, and Influence of Sb‐Substitution
2022. Angewandte Chemie International Edition, 61 (36), e202202182. doi:10.1002/anie.202202182
Directed Dehydration as Synthetic Tool for Generation of a New Na
2022. Angewandte Chemie International Edition, 61 (36), e202202182. doi:10.1002/anie.202202182
Heubach, M.-K.; Schuett, F. M.; Kibler, L. A.; Abdelrahman, A.; Jacob, T.
Initial Stages of Sodium Deposition onto Au(111) from [MPPip][TFSI]: An In‐Situ STM Study for Sodium‐Ion Battery Electrolytes
2022. ChemElectroChem, 9 (20), Art.Nr.: e202200722. doi:10.1002/celc.202200722
Initial Stages of Sodium Deposition onto Au(111) from [MPPip][TFSI]: An In‐Situ STM Study for Sodium‐Ion Battery Electrolytes
2022. ChemElectroChem, 9 (20), Art.Nr.: e202200722. doi:10.1002/celc.202200722
Hausmann, J. N.; Menezes, P. V.; Vijaykumar, G.; Laun, K.; Diemant, T.; Zebger, I.; Jacob, T.; Driess, M.; Menezes, P. W.
In‐Liquid Plasma Modified Nickel Foam: NiOOH/NiFeOOH Active Site Multiplication for Electrocatalytic Alcohol, Aldehyde, and Water Oxidation
2022. Advanced Energy Materials, 12 (38), Art.-Nr.: 2202098. doi:10.1002/aenm.202202098
In‐Liquid Plasma Modified Nickel Foam: NiOOH/NiFeOOH Active Site Multiplication for Electrocatalytic Alcohol, Aldehyde, and Water Oxidation
2022. Advanced Energy Materials, 12 (38), Art.-Nr.: 2202098. doi:10.1002/aenm.202202098
Schilling, M.; Braig, M.; Köble, K.; Zeis, R.
Investigating the V(IV)/V(V) electrode reaction in a vanadium redox flow battery – A distribution of relaxation times analysis
2022. Electrochimica Acta, 430, Art.-Nr.: 141058. doi:10.1016/j.electacta.2022.141058
Investigating the V(IV)/V(V) electrode reaction in a vanadium redox flow battery – A distribution of relaxation times analysis
2022. Electrochimica Acta, 430, Art.-Nr.: 141058. doi:10.1016/j.electacta.2022.141058
Geng, T.; Schick, B. W.; Uhl, M.; Kuehne, A. J. C.; Kibler, L. A.; Ceblin, M. U.; Jacob, T.
Influence of Chloride and Nitrate Anions on Copper Electrodeposition onto Au(111) from Deep Eutectic Solvents
2022. ChemElectroChem, 9 (19), Art.Nr. e202101263. doi:10.1002/celc.202101263
Influence of Chloride and Nitrate Anions on Copper Electrodeposition onto Au(111) from Deep Eutectic Solvents
2022. ChemElectroChem, 9 (19), Art.Nr. e202101263. doi:10.1002/celc.202101263
Juarez, F.; Yin, H.; Groß, A.
Composition and Electronic Structure of Mn O and Co O Cathodes in Zinc–Air Batteries: A DFT Study
2022. The Journal of Physical Chemistry C, 126 (5), 2561–2572. doi:10.1021/acs.jpcc.1c09963
Composition and Electronic Structure of Mn
2022. The Journal of Physical Chemistry C, 126 (5), 2561–2572. doi:10.1021/acs.jpcc.1c09963
Mereacre, V.; Binder, J. R.
Strong-Acid-Catalyzed Formation of Crystalline LiNbO at Low Ambient Temperatures
2022. Inorganic Chemistry, 61 (19), 7222–7225. doi:10.1021/acs.inorgchem.2c00457
Strong-Acid-Catalyzed Formation of Crystalline LiNbO
2022. Inorganic Chemistry, 61 (19), 7222–7225. doi:10.1021/acs.inorgchem.2c00457
Pastorio, C.; Zech, F.; Noettger, S.; Jung, C.; Jacob, T.; Sanderson, T.; Sparrer, K. M. J.; Kirchhoff, F.
Determinants of Spike infectivity, processing, and neutralization in SARS-CoV-2 Omicron subvariants BA.1 and BA.2
2022. Cell Host and Microbe, 30 (9), 1255–1268. doi:10.1016/j.chom.2022.07.006
Determinants of Spike infectivity, processing, and neutralization in SARS-CoV-2 Omicron subvariants BA.1 and BA.2
2022. Cell Host and Microbe, 30 (9), 1255–1268. doi:10.1016/j.chom.2022.07.006
Hassan, H. K.; Farkas, A.; Varzi, A.; Jacob, T.
Mixed Metal‐Organic Frameworks as Efficient Semi‐Solid Electrolytes for Magnesium‐Ion Batteries
2022. Batteries and Supercaps, 5 (10), Art.Nr. e202200260. doi:10.1002/batt.202200260
Mixed Metal‐Organic Frameworks as Efficient Semi‐Solid Electrolytes for Magnesium‐Ion Batteries
2022. Batteries and Supercaps, 5 (10), Art.Nr. e202200260. doi:10.1002/batt.202200260
Mohsin, I. U.; Schneider, L.; Häringer, M.; Ziebert, C.; Rohde, M.; Bauer, W.; Ehrenberg, H.; Seifert, H. J.
Heat generation and degradation mechanisms studied on Na₃V₂(PO₄)₃/C positive electrode material in full pouch / coin cell assembly
2022. Journal of Power Sources, 545, Art.-Nr.: 231901. doi:10.1016/j.jpowsour.2022.231901
Heat generation and degradation mechanisms studied on Na₃V₂(PO₄)₃/C positive electrode material in full pouch / coin cell assembly
2022. Journal of Power Sources, 545, Art.-Nr.: 231901. doi:10.1016/j.jpowsour.2022.231901
Schrade, S.; Zhao, Z.; Supiyeva, Z.; Chen, X.; Dsoke, S.; Abbas, Q.
An asymmetric MnO |activated carbon supercapacitor with highly soluble choline nitrate-based aqueous electrolyte for sub-zero temperatures
2022. Electrochimica Acta, 425, 140708. doi:10.1016/j.electacta.2022.140708
An asymmetric MnO
2022. Electrochimica Acta, 425, 140708. doi:10.1016/j.electacta.2022.140708
Xu, C.; Zhao, J.; Wang, Y.-A.; Hua, W.; fu, Q.; Liang, X.; Rong, X.; Zhang, Q.; Guo, X.; Yang, C.; Liu, H.; Zhong, B.; Hu, Y.-S.
Reversible Activation of V /V Redox Couples in NASICON Phosphate Cathodes
2022. Advanced Energy Materials, 12 (25), Art.Nr. 2200966. doi:10.1002/aenm.202200966
Reversible Activation of V
2022. Advanced Energy Materials, 12 (25), Art.Nr. 2200966. doi:10.1002/aenm.202200966
Marinaro, M.; Dsoke, S.
Advances in Nanomaterials for Lithium-Ion/Post-Lithium-Ion Batteries and Supercapacitors
2022. Nanomaterials, 12 (15), Art.Nr. 2512. doi:10.3390/nano12152512
Advances in Nanomaterials for Lithium-Ion/Post-Lithium-Ion Batteries and Supercapacitors
2022. Nanomaterials, 12 (15), Art.Nr. 2512. doi:10.3390/nano12152512
Stockhausen, R.; Gehrlein, L.; Müller, M.; Bergfeldt, T.; Hofmann, A.; Müller, F. J.; Maibach, J.; Ehrenberg, H.; Smith, A.
Investigating the dominant decomposition mechanisms in lithium-ion battery cells responsible for capacity loss in different stages of electrochemical aging
2022. Journal of Power Sources, 543, Article no: 231842. doi:10.1016/j.jpowsour.2022.231842
Investigating the dominant decomposition mechanisms in lithium-ion battery cells responsible for capacity loss in different stages of electrochemical aging
2022. Journal of Power Sources, 543, Article no: 231842. doi:10.1016/j.jpowsour.2022.231842
Zhang, S.; Wang, J.; Sun, L.; Dang, F.; Du, Y.; Seifert, H. J.; Lei, T.
Revealing the role of Mn/Li disordered mixing in Li-rich cathode Li MnO by first-principles calculations
2022. Physical Review Materials, 6 (5), Art.-Nr.: 055404. doi:10.1103/PhysRevMaterials.6.055404
Revealing the role of Mn/Li disordered mixing in Li-rich cathode Li
2022. Physical Review Materials, 6 (5), Art.-Nr.: 055404. doi:10.1103/PhysRevMaterials.6.055404
Sakong, S.; Huang, J.; Eikerling, M.; Groß, A.
The structure of the electric double layer: Atomistic versus continuum approaches
2022. Current Opinion in Electrochemistry, 33, Art.Nr. 100953. doi:10.1016/j.coelec.2022.100953
The structure of the electric double layer: Atomistic versus continuum approaches
2022. Current Opinion in Electrochemistry, 33, Art.Nr. 100953. doi:10.1016/j.coelec.2022.100953
Kolzenberg, L. von; Werres, M.; Tetzloff, J.; Horstmann, B.
Transition between growth of dense and porous films: theory of dual-layer SEI
2022. Physical Chemistry Chemical Physics, 24 (31), 18469–18476. doi:10.1039/d2cp00188h
Transition between growth of dense and porous films: theory of dual-layer SEI
2022. Physical Chemistry Chemical Physics, 24 (31), 18469–18476. doi:10.1039/d2cp00188h
Schammer, M.; Latz, A.; Horstmann, B.
The Role of Energy Scales for the Structure of Ionic Liquids at Electrified Interfaces: A Theory-Based Approach
2022. The journal of physical chemistry <Washington, DC> / B, 126 (14), 2761–2776. doi:10.1021/acs.jpcb.2c00215
The Role of Energy Scales for the Structure of Ionic Liquids at Electrified Interfaces: A Theory-Based Approach
2022. The journal of physical chemistry <Washington, DC> / B, 126 (14), 2761–2776. doi:10.1021/acs.jpcb.2c00215
Bothe, A.; Gehrlein, L.; Fu, Q.; Li, C.; Maibach, J.; Dsoke, S.; Balducci, A.
Glyoxal‐Based Electrolytes in Combination with Fe O @C‐Based Electrodes for Lithium‐Ion Batteries
2022. Batteries & Supercaps, 5 (8), Art.Nr.: e20220015. doi:10.1002/batt.202200152
Glyoxal‐Based Electrolytes in Combination with Fe
2022. Batteries & Supercaps, 5 (8), Art.Nr.: e20220015. doi:10.1002/batt.202200152
Chiou, M.-H.; Borzutzki, K.; Thienenkamp, J. H.; Mohrhardt, M.; Liu, K.-L.; Mereacre, V.; Binder, J. R.; Ehrenberg, H.; Winter, M.; Brunklaus, G.
Durable fast-charging lithium metal batteries designed with cross-linked polymer electrolytes and niobate-coated cathode
2022. Journal of Power Sources, 538, Art.Nr. 231528. doi:10.1016/j.jpowsour.2022.231528
Durable fast-charging lithium metal batteries designed with cross-linked polymer electrolytes and niobate-coated cathode
2022. Journal of Power Sources, 538, Art.Nr. 231528. doi:10.1016/j.jpowsour.2022.231528
Sarkezi-Selsky, P.; Schmies, H.; Kube, A.; Latz, A.; Jahnke, T.
Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Parametric studies on capillary hysteresis
2022. Journal of Power Sources, 535, Art.Nr. 231381. doi:10.1016/j.jpowsour.2022.231381
Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Parametric studies on capillary hysteresis
2022. Journal of Power Sources, 535, Art.Nr. 231381. doi:10.1016/j.jpowsour.2022.231381
Mancera, L. A.; Diemant, T.; Groß, A.; Behm, R. J.
Molecular and Dissociative Hydrogen Adsorption on Bimetallic PdAg/Pd(111) Surface Alloys: A Combined Experimental and Theoretical Study
2022. The Journal of Physical Chemistry C, 126 (6), 3060–3077. doi:10.1021/acs.jpcc.1c10070
Molecular and Dissociative Hydrogen Adsorption on Bimetallic PdAg/Pd(111) Surface Alloys: A Combined Experimental and Theoretical Study
2022. The Journal of Physical Chemistry C, 126 (6), 3060–3077. doi:10.1021/acs.jpcc.1c10070
Madani, S. S.; Soghrati, R.; Ziebert, C.
A Regression-Based Technique for Capacity Estimation of Lithium-Ion Batteries
2022. Batteries, 8 (4), Art.-Nr.: 31. doi:10.3390/batteries8040031
A Regression-Based Technique for Capacity Estimation of Lithium-Ion Batteries
2022. Batteries, 8 (4), Art.-Nr.: 31. doi:10.3390/batteries8040031
Helmbrecht, K.; Euchner, H.; Groß, A.
Revisiting the Chevrel Phase: Impact of Dispersion Corrections on the Properties of Mo6S8 for Cathode Applications**
2022. Batteries & Supercaps, 5 (8), Art.Nr. e202200002. doi:10.1002/batt.202200002
Revisiting the Chevrel Phase: Impact of Dispersion Corrections on the Properties of Mo6S8 for Cathode Applications**
2022. Batteries & Supercaps, 5 (8), Art.Nr. e202200002. doi:10.1002/batt.202200002
Strauss, F.; Lin, J.; Duffiet, M.; Wang, K.; Zinkevich, T.; Hansen, A.-L.; Indris, S.; Brezesinski, T.
High-Entropy Polyanionic Lithium Superionic Conductors
2022. ACS Materials Letters, 4 (2), 418–423. doi:10.1021/acsmaterialslett.1c00817
High-Entropy Polyanionic Lithium Superionic Conductors
2022. ACS Materials Letters, 4 (2), 418–423. doi:10.1021/acsmaterialslett.1c00817
Gul, N.; Ata, S.; Bibi, I.; Ijaz-ul-Mohsin; Azam, M.; Shahid, A.; Alwadai, N.; Masood, N.; Iqbal, M.
Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
2022. Zeitschrift für Physikalische Chemie, 236 (9), 1173–1189. doi:10.1515/zpch-2022-0009
Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
2022. Zeitschrift für Physikalische Chemie, 236 (9), 1173–1189. doi:10.1515/zpch-2022-0009
Schweighofer, L.; Eschelmüller, B.; Fröhlich, K.; Pfleging, W.; Pichler, F.
Modelling and Optimisation of Laser-Structured Battery Electrodes
2022. Nanomaterials, 12 (9), 1574. doi:10.3390/nano12091574
Modelling and Optimisation of Laser-Structured Battery Electrodes
2022. Nanomaterials, 12 (9), 1574. doi:10.3390/nano12091574
Groß, A.
Reversible vs Standard Hydrogen Electrode Scale in Interfacial Electrochemistry from a Theoretician’s Atomistic Point of View
2022. The Journal of Physical Chemistry C, 126 (28), 11439–11446. doi:10.1021/acs.jpcc.2c02734
Reversible vs Standard Hydrogen Electrode Scale in Interfacial Electrochemistry from a Theoretician’s Atomistic Point of View
2022. The Journal of Physical Chemistry C, 126 (28), 11439–11446. doi:10.1021/acs.jpcc.2c02734
Zeller, S. J.; Geng, T.; Ceblin, M. U.; Uhl, M.; Kuehne, A. J. C.; Kibler, L. A.; Jacob, T.
An Interfacial Study of Au(111) Electrodes in Deep Eutectic Solvents
2022. ChemElectroChem, 9 (14), Art.Nr. e202200352. doi:10.1002/celc.202200352
An Interfacial Study of Au(111) Electrodes in Deep Eutectic Solvents
2022. ChemElectroChem, 9 (14), Art.Nr. e202200352. doi:10.1002/celc.202200352
Xiao, L.; Bian, M.; Zhu, L.; Duan, K.; Leng, W.; Zeis, R.; Sui, P.-C.; Zhang, H.
High-density and low-density gas diffusion layers for proton exchange membrane fuel cells: Comparison of mechanical and transport properties
2022. International Journal of Hydrogen Energy, 47 (53), 22532–22544. doi:10.1016/j.ijhydene.2022.05.092
High-density and low-density gas diffusion layers for proton exchange membrane fuel cells: Comparison of mechanical and transport properties
2022. International Journal of Hydrogen Energy, 47 (53), 22532–22544. doi:10.1016/j.ijhydene.2022.05.092
Fiesinger, F.; Gaissmaier, D.; Borg, M.; Jacob, T.
First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries
2022. ChemSusChem, 15 (14), Art.Nr. e202200414. doi:10.1002/cssc.202200414
First‐Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium‐Ion Batteries
2022. ChemSusChem, 15 (14), Art.Nr. e202200414. doi:10.1002/cssc.202200414
Solheid, J. S.; Elkaseer, A.; Wunsch, T.; Scholz, S.; Seifert, H. J.; Pfleging, W.
Multiobjective Optimization of Laser Polishing of Additively Manufactured Ti-6Al-4V Parts for Minimum Surface Roughness and Heat-Affected Zone
2022. Materials, 15 (9), Art.Nr. 3323. doi:10.3390/ma15093323
Multiobjective Optimization of Laser Polishing of Additively Manufactured Ti-6Al-4V Parts for Minimum Surface Roughness and Heat-Affected Zone
2022. Materials, 15 (9), Art.Nr. 3323. doi:10.3390/ma15093323
Surendran, A.; Enale, H.; Thottungal, A.; Sarapulova, A.; Knapp, M.; Nishanthi, S. T.; Dixon, D.; Bhaskar, A.
Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO 3 in Sodium-Ion Batteries: An In Operando XAS Investigation
2022. ACS Applied Materials & Interfaces, 14 (6), 7856–7868. doi:10.1021/acsami.1c20717
Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO 3 in Sodium-Ion Batteries: An In Operando XAS Investigation
2022. ACS Applied Materials & Interfaces, 14 (6), 7856–7868. doi:10.1021/acsami.1c20717
Rehnlund, D.; Wang, Z.; Nyholm, L.
Lithium‐Diffusion Induced Capacity Losses in Lithium‐Based Batteries
2022. Advanced Materials, 34 (19), Art. Nr.: 2108827. doi:10.1002/adma.202108827
Lithium‐Diffusion Induced Capacity Losses in Lithium‐Based Batteries
2022. Advanced Materials, 34 (19), Art. Nr.: 2108827. doi:10.1002/adma.202108827
Lautenschlaeger, M. P.; Prifling, B.; Kellers, B.; Weinmiller, J.; Danner, T.; Schmidt, V.; Latz, A.
Understanding Electrolyte Filling of Lithium‐Ion Battery Electrodes on the Pore Scale Using the Lattice Boltzmann Method
2022. Batteries & Supercaps, 5 (7), Art.Nr. e202200090. doi:10.1002/batt.202200090
Understanding Electrolyte Filling of Lithium‐Ion Battery Electrodes on the Pore Scale Using the Lattice Boltzmann Method
2022. Batteries & Supercaps, 5 (7), Art.Nr. e202200090. doi:10.1002/batt.202200090
Xiao, L.; Yin, Z.; Bian, M.; Bevilacqua, N.; Zeis, R.; Yuan, J.; Sui, P.-C.
Microstructure reconstruction using fiber tracking technique and pore-scale simulations of heterogeneous gas diffusion layer
2022. International Journal of Hydrogen Energy, 47 (46), 20218–20231. doi:10.1016/j.ijhydene.2022.04.143
Microstructure reconstruction using fiber tracking technique and pore-scale simulations of heterogeneous gas diffusion layer
2022. International Journal of Hydrogen Energy, 47 (46), 20218–20231. doi:10.1016/j.ijhydene.2022.04.143
Xiao, L.; Zhu, L.; Clökler, C.; Grünzweig, A.; Wilhelm, F.; Scholta, J.; Zeis, R.; Shen, Z.-G.; Luo, M.; Sui, P.-C.
Experimental validation of pore-scale models for gas diffusion layers
2022. Journal of Power Sources, 536, Art.-Nr.: 231515. doi:10.1016/j.jpowsour.2022.231515
Experimental validation of pore-scale models for gas diffusion layers
2022. Journal of Power Sources, 536, Art.-Nr.: 231515. doi:10.1016/j.jpowsour.2022.231515
Lei, Y.; Wu, C.; Lu, X.; Hua, W.; Li, S.; Liang, Y.; Liu, H.; Lai, W.-H.; Gu, Q.; Cai, X.; Wang, N.; Wang, Y.-X.; Chou, S.-L.; Liu, H.-K.; Wang, G.; Dou, S.-X.
Streamline Sulfur Redox Reactions to Achieve Efficient Room‐Temperature Sodium–Sulfur Batteries
2022. Angewandte Chemie International Edition, 61 (16), Art.-Nr.: e202200384. doi:10.1002/anie.202200384
Streamline Sulfur Redox Reactions to Achieve Efficient Room‐Temperature Sodium–Sulfur Batteries
2022. Angewandte Chemie International Edition, 61 (16), Art.-Nr.: e202200384. doi:10.1002/anie.202200384
Wegener, J.; Ho, L. C. X.; Glavas, V.; Mueller, J. E.; Höhn, S.; Clausner, A.; Latz, A.
Direct measurement of gaussian distributed radial crystallographic orientations of polycrystalline, layered-oxide secondary particles and their impact on materials utilization in battery cathodes
2022. Energy Storage Materials, 45, 399–411. doi:10.1016/j.ensm.2021.11.025
Direct measurement of gaussian distributed radial crystallographic orientations of polycrystalline, layered-oxide secondary particles and their impact on materials utilization in battery cathodes
2022. Energy Storage Materials, 45, 399–411. doi:10.1016/j.ensm.2021.11.025
Kulesza, P. J.; Nobili, F.; Dsoke, S.; Di Noto, V.; Rutkowska, I. A.
Correction to: Foreword to the memorial issue for Professor Roberto Marassi
2022. Journal of Solid State Electrochemistry, 26 (2), Art.-Nr.: 587. doi:10.1007/s10008-021-05114-6
Correction to: Foreword to the memorial issue for Professor Roberto Marassi
2022. Journal of Solid State Electrochemistry, 26 (2), Art.-Nr.: 587. doi:10.1007/s10008-021-05114-6
Ding, A.; Han, B.; Zhang, S.; Huang, Q.; Wang, J.; Wei, C.; Du, Y.; Seifert, H. J.
Ab initio molecular dynamics study on the disordered Li–Ga–Sn system
2022. Physical Chemistry Chemical Physics, 24 (17), 10537–10547. doi:10.1039/d2cp00618a
Ab initio molecular dynamics study on the disordered Li–Ga–Sn system
2022. Physical Chemistry Chemical Physics, 24 (17), 10537–10547. doi:10.1039/d2cp00618a
Kirchhoff, B.; Jung, C.; Jónsson, H.; Fantauzzi, D.; Jacob, T.
Simulations of the Electrochemical Oxidation of Pt Nanoparticles of Various Shapes
2022. The Journal of Physical Chemistry C, 126 (15), 6773–6781. doi:10.1021/acs.jpcc.2c00472
Simulations of the Electrochemical Oxidation of Pt Nanoparticles of Various Shapes
2022. The Journal of Physical Chemistry C, 126 (15), 6773–6781. doi:10.1021/acs.jpcc.2c00472
Zhao, Z.; Darma, M. S. D.; Tian, G.; Luo, X.; Zhao, E.; Wang, B.-T.; Zhao, J.; Hua, W.; Zhao, X.; Wang, Y.; Ehrenberg, H.; Dsoke, S.
Study on Na₂V₀ ₆₇Mn₀ ₃₃Ti(PO₄)₃ electrodes with ultralow voltage hysteresis for high performance sodium-ion batteries
2022. Chemical Engineering Journal, 444, Article no: 136608. doi:10.1016/j.cej.2022.136608
Study on Na₂V₀
2022. Chemical Engineering Journal, 444, Article no: 136608. doi:10.1016/j.cej.2022.136608
Nassiri, A.; Sabi, N.; Sarapulova, A.; Wei, Y.; Manoun, B.; Indris, S.; Missyul, A.; Ehrenberg, H.; Saadoune, I.
Elucidation of the sodiation/desodiation mechanism in Ca Ti (PO ) /C as promising electrode for sodium batteries: New insights into the phase transitions
2022. Journal of Energy Chemistry, 70, 36–44. doi:10.1016/j.jechem.2022.01.036
Elucidation of the sodiation/desodiation mechanism in Ca
2022. Journal of Energy Chemistry, 70, 36–44. doi:10.1016/j.jechem.2022.01.036
Khudyshkina, A. D.; Morozova, P. A.; Butzelaar, A. J.; Hoffmann, M.; Wilhelm, M.; Theato, P.; Fedotov, S. S.; Jeschull, F.
Poly(ethylene oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries with a Prussian Blue Positive Electrode
2022. ACS Applied Polymer Materials, 4 (4), 2734–2746. doi:10.1021/acsapm.2c00014
Poly(ethylene oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries with a Prussian Blue Positive Electrode
2022. ACS Applied Polymer Materials, 4 (4), 2734–2746. doi:10.1021/acsapm.2c00014
Liang, H.-P.; Chen, Z.; Dong, X.; Zinkevich, T.; Indris, S.; Passerini, S.; Bresser, D.
Photo‐Cross‐Linked Single‐Ion Conducting Polymer Electrolyte for Lithium‐Metal Batteries
2022. Macromolecular rapid communications, 43 (12), Art.-Nr.: 2100820. doi:10.1002/marc.202100820
Photo‐Cross‐Linked Single‐Ion Conducting Polymer Electrolyte for Lithium‐Metal Batteries
2022. Macromolecular rapid communications, 43 (12), Art.-Nr.: 2100820. doi:10.1002/marc.202100820
Zhao, W.; Rohde, M.; Mohsin, I. U.; Ziebert, C.; Du, Y.; Seifert, H. J.
Combined Thermal Runaway Investigation of Coin Cells with an Accelerating Rate Calorimeter and a Tian-Calvet Calorimeter
2022. Batteries, 8 (2). doi:10.3390/batteries8020015
Combined Thermal Runaway Investigation of Coin Cells with an Accelerating Rate Calorimeter and a Tian-Calvet Calorimeter
2022. Batteries, 8 (2). doi:10.3390/batteries8020015
Geng, T.; Zeller, S. J.; Kibler, L. A.; Ceblin, M. U.; Jacob, T.
Electrodeposition of Cu onto Au(111) from Deep Eutectic Solvents: Molar Ratio of Salt and Hydrogen Bond Donor
2022. ChemElectroChem, 9 (7), e202101283. doi:10.1002/celc.202101283
Electrodeposition of Cu onto Au(111) from Deep Eutectic Solvents: Molar Ratio of Salt and Hydrogen Bond Donor
2022. ChemElectroChem, 9 (7), e202101283. doi:10.1002/celc.202101283
Wei, S.; Liu, J.; Xia, Y.; Zhang, H.; Cheng, R.; Sun, L.; Xu, F.; Bu, Y.; Liu, Z.; Huang, P.; Zhang, K.; Rosei, F.; Pimerzin, A. A.; Seifert, H. J.
Enhanced Hydrogen Storage Properties of LiAlH by Excellent Catalytic Activity of XTiO @h‐BN (X = Co, Ni)
2022. Advanced functional materials, 32 (13), Art.-Nr.: 2110180. doi:10.1002/adfm.202110180
Enhanced Hydrogen Storage Properties of LiAlH
2022. Advanced functional materials, 32 (13), Art.-Nr.: 2110180. doi:10.1002/adfm.202110180
Allgayer, F.; Maibach, J.; Jeschull, F.
Comparing the Solid Electrolyte Interphases on Graphite Electrodes in K and Li Half Cells
2022. ACS applied energy materials, 5 (1), 1136–1148. doi:10.1021/acsaem.1c03491
Comparing the Solid Electrolyte Interphases on Graphite Electrodes in K and Li Half Cells
2022. ACS applied energy materials, 5 (1), 1136–1148. doi:10.1021/acsaem.1c03491
Zheng, Y.; Yin, D.; Seifert, H. J.; Pfleging, W.
Investigation of Fast-Charging and Degradation Processes in 3D Silicon–Graphite Anodes
2022. Nanomaterials, 12 (1), Art.-Nr.: 140. doi:10.3390/nano12010140
Investigation of Fast-Charging and Degradation Processes in 3D Silicon–Graphite Anodes
2022. Nanomaterials, 12 (1), Art.-Nr.: 140. doi:10.3390/nano12010140
Borg, M. van den; Gaissmaier, D.; Fantauzzi, D.; Knobbe, E.; Jacob, T.
Atomistic Studies on Water-Induced Lithium Corrosion
2022. ChemSusChem, 15 (2), Art. Nr.: e202101765. doi:10.1002/cssc.202101765
Atomistic Studies on Water-Induced Lithium Corrosion
2022. ChemSusChem, 15 (2), Art. Nr.: e202101765. doi:10.1002/cssc.202101765
Kapitz, M.; Wiesche, S. aus der; Kadic, S.; Strehle, S.
An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects
2022. Heat and mass transfer, 58, 1041–1055. doi:10.1007/s00231-021-03158-y
An experimental test of the Mocikat-Herwig theory of local turbulent heat transfer measurements on cold objects
2022. Heat and mass transfer, 58, 1041–1055. doi:10.1007/s00231-021-03158-y
Winter, E.; Seipel, P.; Zinkevich, T.; Indris, S.; Davaasuren, B.; Tietz, F.; Vogel, M.
Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li Al Ti (PO )
2022. Zeitschrift für physikalische Chemie, 236 (6-8), 817–837. doi:10.1515/zpch-2021-3109
Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li
2022. Zeitschrift für physikalische Chemie, 236 (6-8), 817–837. doi:10.1515/zpch-2021-3109
Menezes, P. V.; Elnagar, M. M.; Al-Shakran, M.; Eckl, M. J.; Menezes, P. W.; Kibler, L. A.; Jacob, T.
In-Liquid Plasma for Surface Engineering of Cu Electrodes with Incorporated SiO Nanoparticles: From Micro to Nano
2022. Advanced Functional Materials, 32 (6), Art.Nr. 2107058. doi:10.1002/adfm.202107058
In-Liquid Plasma for Surface Engineering of Cu Electrodes with Incorporated SiO
2022. Advanced Functional Materials, 32 (6), Art.Nr. 2107058. doi:10.1002/adfm.202107058
Conference Papers
Pfleging, W.
3D electrode architectures for high energy and high power lithium-ion batteries
2022. Energy Harvesting and Storage: Materials, Devices, and Applications XII. Ed.: P. Balaya, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2623655
3D electrode architectures for high energy and high power lithium-ion batteries
2022. Energy Harvesting and Storage: Materials, Devices, and Applications XII. Ed.: P. Balaya, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2623655
Meyer, A.; Sterzl, Y.; Xiao, S.; Rädel, U.; Pfleging, W.
Ablation behaviour of electrode materials during high power and high repetition rate laser structuring
2022. R. Kling & A. Watanabe (Eds.), SPIE Photonics West 2022: Laser-based Micro- and Nanoprocessing XVI ; Proceedings ; 25-27 January 2022, San Francisco, CA, USA, 26, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2609536
Ablation behaviour of electrode materials during high power and high repetition rate laser structuring
2022. R. Kling & A. Watanabe (Eds.), SPIE Photonics West 2022: Laser-based Micro- and Nanoprocessing XVI ; Proceedings ; 25-27 January 2022, San Francisco, CA, USA, 26, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2609536
Rist, U.; Reif, A.; Pfleging, W.
Laser-induced forward transfer as a versatile tool for developing silicon-based anode materials
2022. R. Kling & A. Watanabe (Eds.), Laser-based Micro- and Nanoprocessing XVI, SPIE. doi:10.1117/12.2609588
Laser-induced forward transfer as a versatile tool for developing silicon-based anode materials
2022. R. Kling & A. Watanabe (Eds.), Laser-based Micro- and Nanoprocessing XVI, SPIE. doi:10.1117/12.2609588
Zhu, P.; Meyer, A.; Pfleging, W.
Ultrafast laser ablation of aqueous processed thick-film Li(Ni Mn Co ) cathodes with 3D architectures for lithium-ion batteries
2022. R. Kling & A. Watanabe (Eds.), Laser-based Micro- and Nanoprocessing XVI, SPIE. doi:10.1117/12.2608609
Ultrafast laser ablation of aqueous processed thick-film Li(Ni
2022. R. Kling & A. Watanabe (Eds.), Laser-based Micro- and Nanoprocessing XVI, SPIE. doi:10.1117/12.2608609
Pfleging, W.; Zheng, Y.
How lasers can push silicon-graphite anodes towards next-generation battery
2022. R. Kling & A. Watanabe (Eds.), Laser-based Micro- and Nanoprocessing, SPIE. doi:10.1117/12.2609781
How lasers can push silicon-graphite anodes towards next-generation battery
2022. R. Kling & A. Watanabe (Eds.), Laser-based Micro- and Nanoprocessing, SPIE. doi:10.1117/12.2609781
2021
Journal Articles
Song, C.; Yuan, Y.; Gu, D.; Chen, T.; Liu, Y.; Tang, A.; Wu, L.; Li, D.; Pan, F.
The Evaluation of Mg–Ga Compounds as Electrode Materials for Mg-Ion Batteries via Ab Initio Simulation
2021. Journal of the Electrochemical Society, 168 (11), Art.-Nr. 110539. doi:10.1149/1945-7111/ac3936
The Evaluation of Mg–Ga Compounds as Electrode Materials for Mg-Ion Batteries via Ab Initio Simulation
2021. Journal of the Electrochemical Society, 168 (11), Art.-Nr. 110539. doi:10.1149/1945-7111/ac3936
Zhang, S.; Wang, J.; Lei, T.; Li, X.; Liu, Y.; Guo, F.; Wang, J.; Zhang, W.; Dang, F.; Seifert, H.; Sun, L.; Du, Y.
First-principles study of Mn antisite defect in Li MnO
2021. Journal of physics / Condensed matter, 33 (41), Art.-Nr.: 415201. doi:10.1088/1361-648X/ac16f6
First-principles study of Mn antisite defect in Li
2021. Journal of physics / Condensed matter, 33 (41), Art.-Nr.: 415201. doi:10.1088/1361-648X/ac16f6
Isaev, V. V.; Sergeev, A. V.; Zakharchenko, T. K.; Itkis, D. M.; Groß, A.; Yashina, L. V.
Impact of Cathodic Electric Double Layer Composition on the Performance of Aprotic Li-O Batteries
2021. Journal of the Electrochemical Society, 168 (3), Art.-Nr.: 030520. doi:10.1149/1945-7111/abe6ec
Impact of Cathodic Electric Double Layer Composition on the Performance of Aprotic Li-O
2021. Journal of the Electrochemical Society, 168 (3), Art.-Nr.: 030520. doi:10.1149/1945-7111/abe6ec
Debord, R.; Euchner, H.; Pischedda, V.; Hanfland, M.; San-Miguel, A.; Mélinon, P.; Pailhès, S.; Machon, D.
Isostructural phase transition by point defect reorganization in the binary type-I clathrate Ba Si
2021. Acta materialia, 210, Art.-Nr.: 116824. doi:10.1016/j.actamat.2021.116824
Isostructural phase transition by point defect reorganization in the binary type-I clathrate Ba
2021. Acta materialia, 210, Art.-Nr.: 116824. doi:10.1016/j.actamat.2021.116824
Eslamibidgoli, M. J.; Huang, J.; Kowalski, P. M.; Eikerling, M. H.; Groß, A.
Deprotonation and cation adsorption on the NiOOH/water interface: A grand-canonical first-principles investigation
2021. Electrochimica acta, 398, Art.-Nr.: 139253. doi:10.1016/j.electacta.2021.139253
Deprotonation and cation adsorption on the NiOOH/water interface: A grand-canonical first-principles investigation
2021. Electrochimica acta, 398, Art.-Nr.: 139253. doi:10.1016/j.electacta.2021.139253
De Lauri, V.; Krumbein, L.; Hein, S.; Prifling, B.; Schmidt, V.; Danner, T.; Latz, A.
Beneficial Effects of Three-Dimensional Structured Electrodes for the Fast Charging of Lithium-Ion Batteries
2021. ACS applied energy materials, 4 (12), 13847–13859. doi:10.1021/acsaem.1c02621
Beneficial Effects of Three-Dimensional Structured Electrodes for the Fast Charging of Lithium-Ion Batteries
2021. ACS applied energy materials, 4 (12), 13847–13859. doi:10.1021/acsaem.1c02621
Li, H.; Hua, W.; Liu-Théato, X.; Fu, Q.; Desmau, M.; Missyul, A.; Knapp, M.; Ehrenberg, H.; Indris, S.
New Insights into Lithium Hopping and Ordering in LiNiO₂ Cathodes during Li (De)intercalation
2021. Chemistry of materials, 33 (24), 9546–9559. doi:10.1021/acs.chemmater.1c02680
New Insights into Lithium Hopping and Ordering in LiNiO₂ Cathodes during Li (De)intercalation
2021. Chemistry of materials, 33 (24), 9546–9559. doi:10.1021/acs.chemmater.1c02680
Han, G.; Vasylenko, A.; Neale, A. R.; Duff, B. B.; Chen, R.; Dyer, M. S.; Dang, Y.; Daniels, L. M.; Zanella, M.; Robertson, C. M.; Kershaw Cook, L. J.; Hansen, A.-L.; Knapp, M.; Hardwick, L. J.; Blanc, F.; Claridge, J. B.; Rosseinsky, M. J.
Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability
2021. Journal of the American Chemical Society, 143 (43), 18216–18232. doi:10.1021/jacs.1c07874
Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability
2021. Journal of the American Chemical Society, 143 (43), 18216–18232. doi:10.1021/jacs.1c07874
Meyer, A.; Ball, F.; Pfleging, W.
The Effect of Silicon Grade and Electrode Architecture on the Performance of Advanced Anodes for Next Generation Lithium-Ion Cells
2021. Nanomaterials, (11), 3448 (27 pages). doi:10.3390/nano11123448
The Effect of Silicon Grade and Electrode Architecture on the Performance of Advanced Anodes for Next Generation Lithium-Ion Cells
2021. Nanomaterials, (11), 3448 (27 pages). doi:10.3390/nano11123448
Song, Z.; Zhu, P.; Pfleging, W.; Sun, J.
Electrochemical Performance of Thick-Film Li(Ni Mn Co )O Cathode with Hierarchic Structures and Laser Ablation
2021. Nanomaterials, 11 (11), 2962. doi:10.3390/nano11112962
Electrochemical Performance of Thick-Film Li(Ni
2021. Nanomaterials, 11 (11), 2962. doi:10.3390/nano11112962
Putra, M. H.; Seidenath, S.; Kupfer, S.; Gräfe, S.; Groß, A.
Coupling of photoactive transition metal complexes to a functional polymer matrix**
2021. Chemistry - a European journal, 27 (68), 17104–17114. doi:10.1002/chem.202102776
Coupling of photoactive transition metal complexes to a functional polymer matrix**
2021. Chemistry - a European journal, 27 (68), 17104–17114. doi:10.1002/chem.202102776
Zech, F.; Schniertshauer, D.; Jung, C.; Herrmann, A.; Cordsmeier, A.; Xie, Q.; Nchioua, R.; Prelli Bozzo, C.; Volcic, M.; Koepke, L.; Müller, J. A.; Krüger, J.; Heller, S.; Stenger, S.; Hoffmann, M.; Pöhlmann, S.; Kleger, A.; Jacob, T.; Conzelmann, K.-K.; Ensser, A.; Sparrer, K. M. J.; Kirchhoff, F.
Spike residue 403 affects binding of coronavirus spikes to human ACE2
2021. Nature Communications, 12 (1), 6855. doi:10.1038/s41467-021-27180-0
Spike residue 403 affects binding of coronavirus spikes to human ACE2
2021. Nature Communications, 12 (1), 6855. doi:10.1038/s41467-021-27180-0
Luo, X.; Fiedler, A.; Azmi, R.; Xu, W.; Huang, R.; Geßwein, H.; Maibach, J.; Bruns, M.; Indris, S.; Ehrenberg, H.; Kong, X. Y.
Enhancement of ionic conductivity in novel LiON-AlOₓ multilayer heterostructures prepared by atomic layer deposition
2021. Solid state ionics, 373, Article: 115796. doi:10.1016/j.ssi.2021.115796
Enhancement of ionic conductivity in novel LiON-AlOₓ multilayer heterostructures prepared by atomic layer deposition
2021. Solid state ionics, 373, Article: 115796. doi:10.1016/j.ssi.2021.115796
Mayer, D.; Wurba, A.-K.; Bold, B.; Bernecker, J.; Smith, A.; Fleischer, J.
Investigation of the mechanical behavior of electrodes after calendering and its influence on singulation and cell performance
2021. Processes, 9 (11), Art.Nr. 2009. doi:10.3390/pr9112009
Investigation of the mechanical behavior of electrodes after calendering and its influence on singulation and cell performance
2021. Processes, 9 (11), Art.Nr. 2009. doi:10.3390/pr9112009
Jung, C. K.; Braunwarth, L.; Sinyavskiy, A.; Jacob, T.
Thermodynamic Description of Interfaces Applying the 2PT Method on Reax FF Molecular Dynamics Simulations
2021. Journal of Physical Chemistry C, 125 (44), 24663–24670. doi:10.1021/acs.jpcc.1c07327
Thermodynamic Description of Interfaces Applying the 2PT Method on Reax FF Molecular Dynamics Simulations
2021. Journal of Physical Chemistry C, 125 (44), 24663–24670. doi:10.1021/acs.jpcc.1c07327
Li, M.; Sakong, S.; Groß, A.
In Search of the Active Sites for the Selective Catalytic Reduction on Tungsten-Doped Vanadia Monolayer Catalysts Supported by TiO
2021. ACS catalysis, 11 (12), 7411–7421. doi:10.1021/acscatal.1c01406
In Search of the Active Sites for the Selective Catalytic Reduction on Tungsten-Doped Vanadia Monolayer Catalysts Supported by TiO
2021. ACS catalysis, 11 (12), 7411–7421. doi:10.1021/acscatal.1c01406
Li, X.; Wang, J.; Zhang, S.; Sun, L.; Zhang, W.; Dang, F.; Seifert, H. J.; Du, Y.
Intrinsic Defects in LiMn O : First-Principles Calculations
2021. ACS omega, 6 (33), 21255–21264. doi:10.1021/acsomega.1c01162
Intrinsic Defects in LiMn
2021. ACS omega, 6 (33), 21255–21264. doi:10.1021/acsomega.1c01162
Kirchhoff, B.; Ivanov, A.; Skúlason, E.; Jacob, T.; Fantauzzi, D.; Jónsson, H.
Assessment of the Accuracy of Density Functionals for Calculating Oxygen Reduction Reaction on Nitrogen-Doped Graphene
2021. Journal of Chemical Theory and Computation, 17 (10), 6405–6415. doi:10.1021/acs.jctc.1c00377
Assessment of the Accuracy of Density Functionals for Calculating Oxygen Reduction Reaction on Nitrogen-Doped Graphene
2021. Journal of Chemical Theory and Computation, 17 (10), 6405–6415. doi:10.1021/acs.jctc.1c00377
Butzelaar, A. J.; Röring, P.; Mach, T. P.; Hoffmann, M.; Jeschull, F.; Wilhelm, M.; Winter, M.; Brunklaus, G.; Théato, P.
Styrene-Based Poly(ethylene oxide) Side-Chain Block Copolymers as Solid Polymer Electrolytes for High-Voltage Lithium-Metal Batteries
2021. ACS applied materials & interfaces, 13 (33), 39257–39270. doi:10.1021/acsami.1c08841
Styrene-Based Poly(ethylene oxide) Side-Chain Block Copolymers as Solid Polymer Electrolytes for High-Voltage Lithium-Metal Batteries
2021. ACS applied materials & interfaces, 13 (33), 39257–39270. doi:10.1021/acsami.1c08841
Pimperl, N.; Bevilacqua, N.; Schmid, M. A.; Loichet Torres, P. A.; El-Sayed, H. A.; Zeis, R.; Zeyer, K. P.
Nitrogen-functionalized carbon-supported Pt catalysts implemented in high-temperature polymer electrolyte membrane fuel cell
2021. Journal of power sources, 507, Art.-Nr.: 229971. doi:10.1016/j.jpowsour.2021.229971
Nitrogen-functionalized carbon-supported Pt catalysts implemented in high-temperature polymer electrolyte membrane fuel cell
2021. Journal of power sources, 507, Art.-Nr.: 229971. doi:10.1016/j.jpowsour.2021.229971
Kirchhoff, B.; Jónsson, E. Ö.; Dohn, A. O.; Jacob, T.; Jónsson, H.
Elastic Collision Based Dynamic Partitioning Scheme for Hybrid Simulations
2021. Journal of Chemical Theory and Computation, 17 (9), 5863–5875. doi:10.1021/acs.jctc.1c00522
Elastic Collision Based Dynamic Partitioning Scheme for Hybrid Simulations
2021. Journal of Chemical Theory and Computation, 17 (9), 5863–5875. doi:10.1021/acs.jctc.1c00522
Schuett, F. M.; Zeller, S. J.; Eckl, M. J.; Matzik, F. M.; Heubach, M.-K.; Geng, T.; Hermann, J. M.; Uhl, M.; Kibler, L. A.; Engstfeld, A. K.; Jacob, T.
Versatile 3D-Printed Micro-Reference Electrodes for Aqueous and Non-Aqueous Solutions
2021. Angewandte Chemie - International Edition, 60 (42), 22783–22790. doi:10.1002/anie.202105871
Versatile 3D-Printed Micro-Reference Electrodes for Aqueous and Non-Aqueous Solutions
2021. Angewandte Chemie - International Edition, 60 (42), 22783–22790. doi:10.1002/anie.202105871
Schuett, F. M.; Heubach, M.-K.; Mayer, J.; Ceblin, M. U.; Kibler, L. A.; Jacob, T.
Electrodeposition of Zinc onto Au(111) and Au(100) from the Ionic Liquid [MPPip][TFSI]
2021. Angewandte Chemie / International edition, 60 (37), 20461–20468. doi:10.1002/anie.202107195
Electrodeposition of Zinc onto Au(111) and Au(100) from the Ionic Liquid [MPPip][TFSI]
2021. Angewandte Chemie / International edition, 60 (37), 20461–20468. doi:10.1002/anie.202107195
Zhu, P.; Han, J.; Pfleging, W.
Characterization and Laser Structuring of Aqueous Processed Li(Ni Mn Co )O Thick-Film Cathodes for Lithium-Ion Batteries
2021. Nanomaterials, 11 (7), Art.-Nr.: 1840. doi:10.3390/nano11071840
Characterization and Laser Structuring of Aqueous Processed Li(Ni
2021. Nanomaterials, 11 (7), Art.-Nr.: 1840. doi:10.3390/nano11071840
Stockhausen, R.; Hofmann, A.; Gehrlein, L.; Bergfeldt, T.; Müller, M.; Ehrenberg, H.; Smith, A.
Quantifying Absolute Amounts of Electrolyte Components in Lithium-Ion Cells Using HPLC
2021. Journal of the Electrochemical Society, 168 (8), Article: 080504. doi:10.1149/1945-7111/ac1894
Quantifying Absolute Amounts of Electrolyte Components in Lithium-Ion Cells Using HPLC
2021. Journal of the Electrochemical Society, 168 (8), Article: 080504. doi:10.1149/1945-7111/ac1894
Traskunov, I.; Latz, A.
Localized fluctuations of electrochemical properties in porous electrodes of lithium-ion batteries: Beyond porous electrode theory
2021. Electrochimica acta, 379, Art.-Nr.: 138144. doi:10.1016/j.electacta.2021.138144
Localized fluctuations of electrochemical properties in porous electrodes of lithium-ion batteries: Beyond porous electrode theory
2021. Electrochimica acta, 379, Art.-Nr.: 138144. doi:10.1016/j.electacta.2021.138144
Piescheck, M.; Abdelrahman, A.; Hermann, J. M.; Müller, H.; Jacob, T.; Kibler, L. A.
Hydrogen Peroxide Oxidation Reaction on a 4-Mercaptopyridine Self-Assembled Monolayer on Au(111) Metallized by Platinum Nanoislands
2021. Electrocatalysis, 12 (3), 264–271. doi:10.1007/s12678-021-00647-w
Hydrogen Peroxide Oxidation Reaction on a 4-Mercaptopyridine Self-Assembled Monolayer on Au(111) Metallized by Platinum Nanoislands
2021. Electrocatalysis, 12 (3), 264–271. doi:10.1007/s12678-021-00647-w
Didar, B. R.; Yashina, L.; Groß, A.
First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li–Air Batteries
2021. ACS applied materials & interfaces, 13 (21), 24984–24994. doi:10.1021/acsami.1c05863
First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li–Air Batteries
2021. ACS applied materials & interfaces, 13 (21), 24984–24994. doi:10.1021/acsami.1c05863
Schammer, M.; Horstmann, B.; Latz, A.
Theory of Transport in Highly Concentrated Electrolytes
2021. Journal of the Electrochemical Society, 168 (2), 026511. doi:10.1149/1945-7111/abdddf
Theory of Transport in Highly Concentrated Electrolytes
2021. Journal of the Electrochemical Society, 168 (2), 026511. doi:10.1149/1945-7111/abdddf
Rohde, M.; Mohsin, I. U. I.; Ziebert, C.; Seifert, H. J.
Ionic and Thermal Transport in Na-Ion-Conducting Ceramic Electrolytes
2021. International journal of thermophysics, 42 (10), Art.-Nr.: 136. doi:10.1007/s10765-021-02886-x
Ionic and Thermal Transport in Na-Ion-Conducting Ceramic Electrolytes
2021. International journal of thermophysics, 42 (10), Art.-Nr.: 136. doi:10.1007/s10765-021-02886-x
Duan, K.; Zhu, L.; Li, M.; Xiao, L.; Bevilacqua, N.; Eifert, L.; Manke, I.; Markötter, H.; Zhang, R.; Zeis, R.; Sui, P.-C.
Multiphase and pore scale modeling on catalyst layer of high-temperature polymer electrolyte membrane fuel cell
2021. Journal of the Electrochemical Society, 168 (5), 054521. doi:10.1149/1945-7111/abff03
Multiphase and pore scale modeling on catalyst layer of high-temperature polymer electrolyte membrane fuel cell
2021. Journal of the Electrochemical Society, 168 (5), 054521. doi:10.1149/1945-7111/abff03
Zhang, H.; Zhu, L.; Harandi, H. B.; Duan, K.; Zeis, R.; Sui, P.-C.; Chuang, P.-Y. A.
Microstructure reconstruction of the gas diffusion layer and analyses of the anisotropic transport properties
2021. Energy Conversion and Management, 241, Art.-Nr.: 114293. doi:10.1016/j.enconman.2021.114293
Microstructure reconstruction of the gas diffusion layer and analyses of the anisotropic transport properties
2021. Energy Conversion and Management, 241, Art.-Nr.: 114293. doi:10.1016/j.enconman.2021.114293
Stehle, M.; Sheppard, T. L.; Thomann, M.; Fischer, A.; Besser, H.; Pfleging, W.; Grunwaldt, J.-D.
Spatial activity profiling along a fixed bed of powder catalyst during selective oxidation of propylene to acrolein
2021. Catalysis science & technology, 11, 5781–5790. doi:10.1039/D1CY00553G
Spatial activity profiling along a fixed bed of powder catalyst during selective oxidation of propylene to acrolein
2021. Catalysis science & technology, 11, 5781–5790. doi:10.1039/D1CY00553G
Hermann, J. M.; Müller, H.; Daccache, L.; Adler, C.; Keller, S.; Metzler, M.; Jacob, T.; Kibler, L. A.
Formic acid oxidation reaction on Au(111) electrodes modified with 4-mercaptopyridine SAM
2021. Electrochimica Acta, 388, Art.-Nr.: 138547. doi:10.1016/j.electacta.2021.138547
Formic acid oxidation reaction on Au(111) electrodes modified with 4-mercaptopyridine SAM
2021. Electrochimica Acta, 388, Art.-Nr.: 138547. doi:10.1016/j.electacta.2021.138547
Bevilacqua, N.; Asset, T.; Schmid, M. A.; Markötter, H.; Manke, I.; Atanassov, P.; Zeis, R.
Impact of catalyst layer morphology on the operation of high temperature PEM fuel cells
2021. Journal of Power Sources Advances, 7, Art.-Nr.: 100042. doi:10.1016/j.powera.2020.100042
Impact of catalyst layer morphology on the operation of high temperature PEM fuel cells
2021. Journal of Power Sources Advances, 7, Art.-Nr.: 100042. doi:10.1016/j.powera.2020.100042
Hansen, A.-L.; Kremer, R. K.; Heppke, E. M.; Lerch, M.; Bensch, W.
Mechanochemical Synthesis and Magnetic Characterization of Nanosized Cubic Spinel FeCr₂S₄ Particles
2021. ACS omega, 6 (20), 13375–13383. doi:10.1021/acsomega.1c01412
Mechanochemical Synthesis and Magnetic Characterization of Nanosized Cubic Spinel FeCr₂S₄ Particles
2021. ACS omega, 6 (20), 13375–13383. doi:10.1021/acsomega.1c01412
Dixon, D.; Mangold, S.; Knapp, M.; Ehrenberg, H.; Bhaskar, A.
Direct Observation of Reductive Coupling Mechanism between Oxygen and Iron/Nickel in Cobalt-Free Li-Rich Cathode Material: An in Operando X-Ray Absorption Spectroscopy Study
2021. Advanced Energy Materials, 11 (24), Art.-Nr. 2100479. doi:10.1002/aenm.202100479
Direct Observation of Reductive Coupling Mechanism between Oxygen and Iron/Nickel in Cobalt-Free Li-Rich Cathode Material: An in Operando X-Ray Absorption Spectroscopy Study
2021. Advanced Energy Materials, 11 (24), Art.-Nr. 2100479. doi:10.1002/aenm.202100479
Mohsin, I. U.; Ziebert, C.; Rohde, M.; Seifert, H. J.
Comprehensive Electrochemical, Calorimetric Heat Generation and Safety Analysis of Na MnO Cathode Material in Coin Cells
2021. Journal of the Electrochemical Society, 168 (5), Art.-Nr. 050544. doi:10.1149/1945-7111/ac0176
Comprehensive Electrochemical, Calorimetric Heat Generation and Safety Analysis of Na
2021. Journal of the Electrochemical Society, 168 (5), Art.-Nr. 050544. doi:10.1149/1945-7111/ac0176
Mueller, J. E.; Hoffmannová, H.; Hiratoko, T.; Krtil, P.; Jacob, T.
Structural evolution of a PtRu catalyst in the oxidation of an organic molecule
2021. Journal of Catalysis, 398, 89–101. doi:10.1016/j.jcat.2021.04.001
Structural evolution of a PtRu catalyst in the oxidation of an organic molecule
2021. Journal of Catalysis, 398, 89–101. doi:10.1016/j.jcat.2021.04.001
Song, Z.; Tong, J.; Pfleging, W.; Sun, J.
A review: Learning from the flight of beetles
2021. Computers in Biology and Medicine, 133, Art.-Nr.: 104397. doi:10.1016/j.compbiomed.2021.104397
A review: Learning from the flight of beetles
2021. Computers in Biology and Medicine, 133, Art.-Nr.: 104397. doi:10.1016/j.compbiomed.2021.104397
Bertolini, S.; Jacob, T.
Density Functional Theory Studies on Sulfur-Polyacrylonitrile as a Cathode Host Material for Lithium-Sulfur Batteries
2021. ACS Omega, 6 (14), 9700–9708. doi:10.1021/acsomega.0c06240
Density Functional Theory Studies on Sulfur-Polyacrylonitrile as a Cathode Host Material for Lithium-Sulfur Batteries
2021. ACS Omega, 6 (14), 9700–9708. doi:10.1021/acsomega.0c06240
Serrer, M.-A.; Stehle, M.; Schulte, M. L.; Besser, H.; Pfleging, W.; Saraci, E.; Grunwaldt, J.-D.
Spatially‐resolved insights into local activity and structure of Ni‐based CO₂ methanation catalysts in fixed‐bed reactors
2021. ChemCatChem, 13 (13), 3010–3020. doi:10.1002/cctc.202100490
Spatially‐resolved insights into local activity and structure of Ni‐based CO₂ methanation catalysts in fixed‐bed reactors
2021. ChemCatChem, 13 (13), 3010–3020. doi:10.1002/cctc.202100490
Castelli, G. F.; Kolzenberg, L. von; Horstmann, B.; Latz, A.; Dörfler, W.
Efficient Simulation of Chemical–Mechanical Coupling in Battery Active Particles
2021. Energy technology, 9 (6), Art.-Nr.: 2000835. doi:10.1002/ente.202000835
Efficient Simulation of Chemical–Mechanical Coupling in Battery Active Particles
2021. Energy technology, 9 (6), Art.-Nr.: 2000835. doi:10.1002/ente.202000835
Erakca, M.; Baumann, M.; Bauer, W.; Biasi, L. de; Hofmann, J.; Bold, B.; Weil, M.
Energy Flow Analysis of Laboratory Scale Lithium-Ion Battery Cell Production
2021. iScience, 24 (5), Article: 102437. doi:10.1016/j.isci.2021.102437
Energy Flow Analysis of Laboratory Scale Lithium-Ion Battery Cell Production
2021. iScience, 24 (5), Article: 102437. doi:10.1016/j.isci.2021.102437
Zhang, E.; Fulik, N.; Zhang, H.; Bevilacqua, N.; Zeis, R.; Xu, F.; Brunner, E.; Kaskel, S.
NMR analysis of phosphoric acid distribution in porous fuel cell catalysts
2021. Chemical Communications, 57 (20), 2547–2550. doi:10.1039/d0cc07738k
NMR analysis of phosphoric acid distribution in porous fuel cell catalysts
2021. Chemical Communications, 57 (20), 2547–2550. doi:10.1039/d0cc07738k
Hassan, H. K.; Galal, A.; Atta, N. F.; Jacob, T.
Iron-based perovskites-reduced graphene oxide as possible cathode materials for rechargeable iron-ion battery
2021. Journal of Alloys and Compounds, 870, Art.-Nr.: 159383. doi:10.1016/j.jallcom.2021.159383
Iron-based perovskites-reduced graphene oxide as possible cathode materials for rechargeable iron-ion battery
2021. Journal of Alloys and Compounds, 870, Art.-Nr.: 159383. doi:10.1016/j.jallcom.2021.159383
Zhu, L.; Yang, W.; Xiao, L.; Zhang, H.; Gao, X.; Sui, P.-C.
Stochastically modeled gas diffusion layers: Effects of binder and polytetrafluoroethylene on effective gas diffusivity
2021. Journal of the Electrochemical Society, 168 (1), Art.-Nr.: 014514. doi:10.1149/1945-7111/abdc60
Stochastically modeled gas diffusion layers: Effects of binder and polytetrafluoroethylene on effective gas diffusivity
2021. Journal of the Electrochemical Society, 168 (1), Art.-Nr.: 014514. doi:10.1149/1945-7111/abdc60
Mohsin, I. U.; Ziebert, C.; Rohde, M.; Seifert, H. J.
Thermophysical Characterization of a Layered P2 Type Structure Na₀.₅₃MnO₂Cathode Material for Sodium Ion Batteries
2021. Batteries, 7 (1), Article no: 16. doi:10.3390/batteries7010016
Thermophysical Characterization of a Layered P2 Type Structure Na₀.₅₃MnO₂Cathode Material for Sodium Ion Batteries
2021. Batteries, 7 (1), Article no: 16. doi:10.3390/batteries7010016
Birkholz, O.; Neumann, M.; Schmidt, V.; Kamlah, M.
Statistical investigation of structural and transport properties of densely-packed assemblies of overlapping spheres using the resistor network method
2021. Powder technology, 378, 659–666. doi:10.1016/j.powtec.2020.09.056
Statistical investigation of structural and transport properties of densely-packed assemblies of overlapping spheres using the resistor network method
2021. Powder technology, 378, 659–666. doi:10.1016/j.powtec.2020.09.056
2020
Journal Articles
Bresser, D.; Leclere, M.; Bernard, L.; Rannou, P.; Mendil-Jakani, H.; Kim, G.-T.; Zinkevich, T.; Indris, S.; Gebel, G.; Lyonnard, S.; Picard, L.
Organic Liquid Crystals as Single‐Ion Li+ Conductors
2020. ChemSusChem, 14 (2), 655–661. doi:10.1002/cssc.202001995
Organic Liquid Crystals as Single‐Ion Li+ Conductors
2020. ChemSusChem, 14 (2), 655–661. doi:10.1002/cssc.202001995